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Abstract— This paper proposes a modified split and merge 
algorithm for line extraction with high accuracy, efficient speed 
and low complexity. It is robust against measurement noises 
and demonstrates satisfactory results on different surfaces in 
determining line boundaries. The method is based on the least 
square equation to fit a line on a series of uncertain points. 
Different least square criterion is investigated to choose the best 
one for line extraction. A novel approach is proposed here to 
adopt threshold on different surfaces. 

Although the SLAM is not main goal of this paper, a feature 
based SLAM is implemented on a mobile rescue robot to 
observe the proposed line extraction performance, practically. 
 
Index Terms— Least square, Line extracting, Adaptive 
parameter estimation, SLAM 

I. INTRODUCTION 
Ocalization and map building is an important task of 
mobile robots. A precise and stable self localization is a 

key feature to act successfully in an unknown environment. 
Dead reckoning such as odometry (wheel rotation count or 
IMU) may conventionally be used, to estimate a robot 
position. Due to unbounded position error generated by the 
odometry, it doesn’t suffice alone for localization. A large 
number of experiments using various kinds of sensors has 
shown that range sensor based SLAM techniques using laser 
[1], sonar [2],[3], and vision [4] work well in a real 
environment for both indoor [5] and outdoor applications 
[6]. A possible way to enhance localization is to use laser 
scan matching. Compared to other sensors, laser scanners 
have unique advantages such as: dense and accurate range 
measurement, high sampling rate, excessive angular 
resolution, as well as good range and distance resolution. In 
laser scan matching, the position and orientation or pose of 
the current scan is sought with respect to a reference laser 
scan. The pose of the current scan is adjusted until the best 
overlap with the reference scan is achieved. 

Laser scan matching methods are categorized based on 
their association: point to point and feature to feature. The 
point to point matching approach [1],[7],[8], is to 
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approximate the alignment of two consecutive scans, and 
then iteratively improve the alignment by defining and 
minimizing a distance between the scans. Moreover, it does 
not require the environment to be structured or contain 
predefined features. In the feature to feature matching 
approach, instead of working directly with raw scan points, 
the raw scans are transformed into geometric features. These 
extracted features are used in matching at the next step. Such 
approaches interpret laser scans and require the presence of 
chosen features in the environment. Features such as line 
segments [9], corners [10] or range extrema [6] are extracted 
from laser scans, and matched. Features require less memory 
space while provide rich and accurate information. 
Algorithms based on parameterized geometric features are 
expected to be more efficient compared to the point-based 
algorithms. 

Among different geometric primitives, lines segments are 
the simplest one. Most office environments are easily 
described using line segments. Line-based maps are suitable 
for indoor applications, or structured outdoor applications, 
where straight edged objects comprise many of the 
environmental features. Because a line is composed of many 
points, the noise on a point usually does not affect the 
position and orientation of the line substantially. Therefore it 
is robust to noise. The sets of segments can be input to 
another algorithm that extracts high level features such as 
doors or corners. The line segments can be used as a part/all 
of a local map representation at the core of a SLAM 
algorithm.  

Several algorithms have been proposed for extracting line 
segments from 2D range data. Since the algorithms do not 
incorporate noises of the range data, the fitted lines do not 
have a sound statistical interpretation. Nguyen et al. [11] 
presents an experimental evaluation of different line 
extraction algorithms on 2D laser scans for indoor 
environment. Diosi et al. [12] consider line fitting systematic 
errors as they mainly depend on a specific hardware and 
testing environment. S. T. Pfister et al. [9] suggest a line 
extraction algorithm using weighted line fitting for line-
based map building. T. Pavlidis et al. [13] proposed a split-
and merge algorithm for the line extraction which is 
extracted from computer vision. This method is very popular 
and has been used by others. 

Split-and-Merge is clearly the best choice for real-time 
applications, due to its superior speed. It is also the first 
choice for localization problems with a priori map, where 
FalsePos is not very important. However the quality of the 
split and merge method is not guaranteed in all applications. 
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For example in line based SLAM, bad feature extraction 
may lead to the system divergence. 

This paper introduces an Adaptive Line Extraction 
Algorithm (ALE) to create line-based maps using a series of 
range data collected from multiple poses. ALE is a modified 
version of the split and merge method with increased quality 
and robustness in application where Split-and-Merge fails to 
function. 

This paper is organized as follows; in section II sensor 
noise model is described, section III describes our method, 
in section IV SLAM algorithm is discussed and finally 
details of experiments setup and conclusion is presented. 

II. SENSOR NOISE MODEL 
Range sensors are subjected to both random noises and 

bias [12]. Equation (1) describes the polar representation of 
scanned data. Let the range measurement, d  be comprised of 
the “true” range, D , and an additive noise term, d�  (2): 

cos
sin

i i
i i

i i

x
u d

y
�
�

� � � �
� �� 	 � 	

 � 
 �

 (1) 

.i i did D �� �  (2) 

d�  is assumed to be a zero-mean Gaussian random 

variable with variance 2
d . In a similar way (3) represents the 

measurement error of angle� i. 

i i i�� �� � �  (3) 
where i� is the “true” angle of the ith direction, and ��  is 
again a zero-mean Gaussian random variable with variance

2
d . Hence: 
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Generally, one can think of the scan point iu  as the sum of 
the true component, iU , and the uncertain component, iu� : 

i i iu U u�� �  (5) 
if max{ , } 1d�� � � , which is a valid for most laser scanners, 
by replacing the values of ui and Ui form (4) into (5), it can 
be written in the form of (6) 
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Assuming ��  and d�  are independent, the covariance of the 
range measurement data is: 
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For practical purposes, i� and id  are good estimates of the 
quantities i� and iD [9]. Eq. 7 describes the impact of noise 
on data distortion.  

III. ADAPTIVE LINE EXTACTING  

A. Smoothing data to increase the algorithm efficiency  
To increase the algorithm efficiency data are split into 

segments. The segmentation is based on the continuity of the 
distance data acquired from laser.  

Each segment is smoothed and fed into ALE. If laser 
scanner data contain outliers, the smoothed values might be 
distorted, and lose to reflect the behavior of the bulk of the 
neighboring data points. To overcome this problem, the data 
can be smoothed using a robust procedure which is not 
influenced by a small number of outliers (fig. 1). 

Lowess is a good candidate to handle this type of 
smoothing. The terms lowess is derived from “locally 
weighted scatter plot smooth.” Since adjacent data points 
and their assigned regression weight function, in the defined 
span, determine each smoothed value, the method is 
considered to be both local and weighted. In addition, it is 
possible to use a robust weighted function to make the 
smoothing process resistant to the outliers. This method 
utilizes a linear polynomial. ALE takes advantage of robust 
lowess smoothing method. The robust lowess smoothing 
process follows these steps for each data point: 
� Compute the regression weights for each data point in the 

span. The weights are given by the tri-cube function 
represented by (8). 
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where r is the predictor value associated with the response 
value to be smoothed, ri is the nearest neighbors of r as 
defined by the span, and d(r) is the distance along the 
abscissa from r to the most distant predictor value within 
the span. 

� Calculate the robust weights for each data point in the 
span. The weights are given by the bisquare function. 
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ei is the residual of the ith data point produced by the 
regression smoothing procedure, and M is the median 
absolute deviation of the residuals. 

� The final smoothed value is calculated using both the local 
regression weight and the robust weight. 

1 2i i iw w w�   (10) 
A weighted linear least squares regression is performed by 

weight wi on the each ri to estimate filtered values. The 
regression employs a first degree polynomial for lowess. For 
more information about this section refer to [14]. 

B. Split and merge with binary search 
Split and merge method has a better performance from 

speed point of view [11] and therefore a suitable choice for 
real-time localization or SLAM applications. The novel 
approach (ALE), proposed in this paper, is based on the split 
and merges procedure with a higher accuracy. Furthermore, 
the least square criterion is used instead of maximum 



 
 

 

 
Fig. 1. Plot (a) shows that the outlier influences the smoothed value for 

several nearest neighbors. Plot (b) suggests that the residual of the outlier is 
greater than six median absolute deviations. Therefore, the robust weight is 
zero for this data point. Plot (c) shows that the smoothed values neighboring 
the outlier reflect the bulk of the data. 
 
distance between data points and fitted line [15] to evaluate 
fitting. 

When a line is fitted, the only decision algorithm makes is 
whether the fitting is proper or not. Hence, the idea of binary 
search is used to obtain the estimated line with the maximum 
length and precision. Fig.(2) illustrates three states of the 
binary searches to find the break point of i-th line. In each 
step, the method makes progressively better guesses for the 
break point of the i-th line,����, and closes in on the location 
of the sought ���value by selecting the middle element in the 
span, comparing whether ����� 	 
� and ����� is in the same 
line (i.e. ��� � ��), and determining if the ��� is greater than, 
less than, or equal to the ��. 

In spite of traditional Split and Merge, ALE does splitting 
procedures and merging procedures simultaneously. 
Consequently, the line boundaries can be identified with 
more precision. 

C. Least square line fitting criterion 
To obtain the coefficients’ estimates, the least squares 

method minimizes the summed square of residuals (11). The 
residual for the ith data point ir is defined as the difference 
between the observed response value iy and the fitted 
response value ˆiy , and is identified as the error associated 
with the data. 

Let 1p  and 2p  to be the slope and the intercept of the 
fitted line over ix and iy  data. The least square method 
determines p parameter for minimizing SSE: 
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By solving least square, the p parameter is obtained by (13) 

  
Fig. 2. Thick blue lines show search span, [L, R]. Orange circle shows 
actual break point. The procedure starts to search after the break point of 
last line, and select the middle of span as first guess. Step 1: Fitting is not 
satisfactory, split. Step 2: Fitting is satisfactory, add a half. Step 3: Check if 
fitting is satisfactory?  This process is repeated until ��� placed in the circle. 
 

1

1

1
1

1n

x
x

x

� �
� 	
� 	"
� 	
� 	

 �

�
�

 (12) 

1( )T Tp y�� " " "  (13) 
1( )T T�# " " " "�  (14) 
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In order to evaluate parameter estimation performance, a 

different criterion might be required. Usually a threshold is 
needed when the least square method is used for line 
segmentation. The threshold assigns whether a line can be 
fitted above this number of points or not. To best of our 
knowledge, the benefit of different least square criteria to 
select the line segmentation threshold is not addressed in any 
research. Several least square criteria for a straight wall from 
different ranges and views (fig. 3) have been measured (fig. 
4). The best criterion must have similar values for identical 
bodies in different ranges and views, since all measured 
criterions belong to the same 20 cm wall. SSE, RMSE, MAE 
and R-square criterion in the order, is defined by equations 
(17), (19), (20), and (22): 
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If the fitted line perfectly matches the wall: 
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Fig. 3. Sample of raw data in Cartesian coordinate for different ranges and views angles 

 

Fig. 4. The amount of different criteria for raw data from a straight wall in 
different angle of views and different distances, depicted in Fig (3) 
 

1 2i iY p X p� �  (23) 

i i
i i

i i

x X
u u

y Y
�

� � � �
� �� 	 � 	

 � 
 �

�  (24) 

As explained in section II, the MSE can be estimated by 
sensor noise parameter for a straight line. 
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Using the relation between MSE and other least square 

criteria, we can interpret them as stochastic variable. 
However, the main goals of this section are:  
1. Quantity of criteria differs for several surfaces by different 

roughness.  
2. Each of the criteria SSE, RMSE, MAE and R-square is a 

function of range and status of the wall relative to the laser 
and sensor noise model; furthermore, usually criteria are 
functions of the number of points except for RMSE. 

3. According to the theoretical results (26), RMSE must 
increase when the range increases. However, the 
experimental results are the other way around. The 
nonlinearity in sensor noise model could be the reason. 
Thereby the threshold cannot be determined via a static 
function of range or view angle. 

D. Floating threshold  
In split and merge methods, choosing threshold values is 

an important task since the algorithm performance is very 
sensitive to the values used [11]. A low threshold may break 
the line in two segments (fig. 5-a), and a high threshold 
could include the next line data (see fig. 5-b). 

It is expected for the RMSE to rise sharply at the 
refraction point of two lines. To capture this point both the 
gradient and value of RMSE are used in ALE. Therefore we 
propose to select threshold of Least Square Criterion where 
the gradient of RMSE growth suddenly. 

In this paper to achieve this goal, a floating method is 
suggested which dynamically changes threshold between a 
maximum and minimum value. A method that uses binary 
search is described in following pseudo code.  

It is clearly seen that by using the ALE, the final threshold 
is 0.0037 and the fitted RMSE is 0.0035. The test results are 
obtained by defining the minimum threshold to 0.0025 (see 
fig. 5-a) and the maximum threshold to 0.008 (see fig. 5-b).  
Fig. 6 and fig. 7 illustrate the output. 
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Fig. 5. Fit by low threshold (a), fit by high threshold (b) 
 

 
Fig. 6. Plot of RMSE criterion change  

 
Fig. 7. Extracted line by proposed approach in this paper 

 
Fig. 8. Similar corner in two images 

IV. SLAM 
Today, lightweight SLAM algorithms are needed in many 

embedded robotic systems. We are planning to perform 
simultaneous localization and mapping (SLAM ) by fusing 
corners, edges and line segments which are measured by a 
laser range finder sensor. 

The scan matching algorithm computes a transformation 
d&  and a rotation �&  such that a set of features, extracted 

from the first scan, is mapped optimally to a feature set of 
the second scan. The goal of this approach is to build a map 
containing line features representing the walls, cupboards, 
doors, windows, etc. in the environment. 

Human brain uses a simple method to adopt images. In 
this process, brain detects and compares corners between the 
two images, and tries to find a proper match. By adopting 
one corner in each image, a rotation is used to increase the 
overlap between images. If the result is not satisfied, then it 
checks the next match in the same way. For example in fig. 
8, the corner marked with a circle is similar to the corners 
marked with a square. Thus, there are two matches for this 
corner. A comparison between the square marked flags 
shows that the right corner is a better match. 

A similar idea is used in our practical experiment to find 
the matched lines in different scans. In each laser scan, lines 
are extracted to identify the corners. The combination of 
these two features is used in a feature based SLAM. By 
comparing the poses and angles of a pair of features in two 
scans, the corresponding corner is identified. In the next 
step, a transformation is performed to find the maximum 
overlapping between corresponding corners and lines. At the 
end, the transformation is applied to the current image and is 
added to reference. Robot position is updated by the 
following formula.  
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V. EXPERIMENTAL SETUP 
The MRL Naji2 is used to gather the experimental result. 

The robot is equipped   with   an   embedded PC and a laser  
sensor.  The   laser   sensor   is laser rangefinders HOKUYO 
URG-04LX with the maximum measurement range of 
4094mm, and range resolution of 1mm. The sensor is able to 
scan  an  angle  of 0����240���with��the  angular  resolution  of 
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1. If the beginning point of the segment, Kmin, minus the end 

point of the segment, Kmax, is more less than minimum 
allowed point in a line, then goto 2; else end. 

2. Let L=Kmin and R=Kmax. 
3. Let P = middle of L and R. 
4. Fit a line over points between Kmin and P and calculate the 

RMSE of fitted line. 
5. If RMSE is less than ERMSE (RMSE threshold) and the 

increase rate of RMSE is less than GRMSE (RMSE gradient 
threshold) the fitted line is acceptable, so L=P; else R=P. 

6. If R-P>1 goto 3. 
7. If P minus Kmin is more than minimum allowed point in a 

line then extracted line over points between Kmin and P is 
acceptable. 

8. Kmin=P+1. 
9. Goto 1 
—————————————————————————–
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Fig. 9. HOKUYO URG-04LX laser scanner (a) Naji2 mobile robot (b) 

 
0.36� and the maximum sampling frequency of 10Hz. 
The robot employs a real-time operating system (RTAI 
Linux) with an embedded exploration system and a remote 
control module via wireless network (see Fig.9). 

The algorithms are programmed in C++. The benchmarks 
are performed on a PC with PentiumIV-3.4GHz and 1GB of 
memory. Fig. 10 depicts a map which is obtained by this 
robot.      

VI. CONCLUSION 
The superior speed of the split and merge method, makes 

it the best option for most of the real-time line extracting 
applications. However, the threshold values affect the 
algorithm performance in split and merge method. The 
conducted experiments revealed that a static threshold does 
not demonstrate a desirable accuracy and leads to a bad 
feature extraction and system divergence in the line based 
SLAM.  

An Adaptive Line Extraction (ALE) is presented here for 
SLAM application. ALE is a modified version of split and 
merge method. It changes the threshold dynamically and 
finds the best line boundary. ALE is composed of the 
following steps: data smoothing to decrease the effect of 
noise, fitting a line to a data set using the least square 
method, applying RMSE criterion to evaluate the fitted line 
quality.  

The strength of ALE is on the splitting method and the 
dynamic threshold. These two features enable ALE to 
identify line boundary fast and precisely.  
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