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Abstract

In this paper, we design and analyze a class of multi-agent systems that locate peaks of

uncertain static fields in a distributed and scalable manner. Our approach builds on adaptive

control. The scalar field of interest is assumed to be generated by a radial basis network func-

tion. Each agent is driven by swarming and gradient ascent efforts based on its own recursively

estimated field via locally collected measurements by itself and its neighboring agents. The

convergence properties of the proposed multi-agent systems are analyzed. We also propose a

sampling scheme to facilitate the convergence. We provide simulation results by applying our

proposed algorithms to fully actuated nonholonomic differentially driven mobile robots under

different conditions. The extensive simulation results match well with the predicted behaviors

from the convergence analysis, and illustrate the usefulness of the proposed coordination and

sampling algorithms.
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1 Introduction

In recent years, due to significant progress in sensing, communication, and embedded-system tech-

nologies, many research activities have been focused on theareas of mobile sensor networks and

multi-agent systems [1, 2, 3, 4]. Mobile sensor networks usually form an ad-hoc wireless commu-

nication network in which each agent shares information with neighboring agents within a short

communication range, with limited memory and computational power. Although each agent has

limited capabilities, as a group, the multi-agent system may perform various tasks at a level which

is compatible to a small number of high-end mobile agents. Inorder to achieve a global goal

such as exploration, surveillance, and environmental monitoring, mobile sensing agents require

distributed coordination to deal with uncertain environments.

Decentralized and adaptive control algorithms have been proposed in [4] for networks of robots

to converge to optimal sensing configurations while simultaneously learning the distribution of

sensory information in the environment.

Tanner [5] and Olfati-Saber [2] developed comprehensive analyses of the flocking algorithm

by Reynolds [6]. In general, the collective swarm behaviorsof birds and fish are known to be the

outcomes of natural optimization [7, 8]. These flocking algorithms have been used to move mobile

sensor networks in groups [9].

Among other problems in mobile sensor networks, finding peaks of a scalar field of interest

has attracted much attention of control engineers [10, 11, 12, 9]. This is due to numerous appli-

cations of tracking toxins by robotic sensors in uncertain environments. Such demand exists in

environmental monitoring where a dominant method for monitoring of environmental variables

(e.g., biomass of harmful algal blooms) is still manual sampling followed by lab analysis. For

example, each robotic sensor may carry sensors for samplingpH, blue-green algae (cyanobacte-

ria), Chlorophylla (total biomass of algae/phytoplankton) and dissolved oxygen to investigate the

growth of harmful algal blooms in fresh water. The detrimental effects of harmful environmental

variables can be seen from satellite images in a large scale with a low resolution. For example,

Figs. 1(a) and (b) show the dead zone created by harmful algalblooms and the oil slick in the Gulf

of Mexico, respectively.



(a) (b)

Figure 1: (a) Dead zone created by algal blooms in the Gulf of Mexico (NASA). (b) The oil slick

as seen from space by NASA’s Terra satellite on May 24, 2010 (Photo courtesy of NASA).

The cooperative network of agents that performs adaptive gradient climbing in a distributed

environment was presented in [10, 11]. The centralized network can adapt its configuration in

response to the sensed environment in order to optimize its gradient climb.

In [9], distributed learning and control algorithms are proposed to be executed by each agent

independently to estimate a scalar field of interest from noisy measurements and to coordinate

multiple agents in a distributed manner to discover peaks ofthe field. Each mobile agent moves

towards peaks of the field using the gradient of its estimatedfield while avoiding collision and

maintaining communication connectivity. The convergenceproperties of the resulting collective

stochastic algorithm were analyzed using the Ljung’s ODE approach. In the analysis, the estima-

tion error dynamics have been averaged out under sufficient conditions and so only the ODE of the

controlled multi-agent system dynamics could be considered.

In this paper, we design and analyze a class of multi-agent systems that locate peaks of static

scalar fields in a distributed and scalable manner. Our approach builds on adaptive control. The

scalar field of interest is assumed to be generated by a radialbasis network function. We use

the flocking algorithm for robotic sensors to make spatiallydistributed sampling and to maintain

communication connectivity. The proposed distributed adaptive control consists of the swarming

effort and the gradient ascent motion control based on the recursively estimated field. The associ-

ated recursive estimation laws have been developed by gradient-based and recursive least squares



(RLS) algorithms. In contrast to [9], the closed-loop dynamics combining the motion control of

the multi-agent system and the parameter estimation error dynamics under proposed strategies have

been analyzed. A set of sufficient conditions for which the convergence of the closed-loop multi-

agent system is achieved has been provided. To facilitate the successful convergence, we provide

an additional scalable and distributed sampling strategy that keeps selective past measurements.

We also provide simulation results by applying our proposedalgorithms to fully actuated nonholo-

nomic differentially driven mobile robots under differentconditions. The extensive simulation

study illustrates the effectiveness of the proposed schemes.

The remainder of this paper is organized as follows. Models for the resource-constrained multi-

agent systems and the static environmental field are introduced in Sections 2 and 3, respectively.

From the models and the motivations, the problem of synthesizing and analyzing coordination

algorithms is formulated in Section 4. The proposed distributed adaptive control for multi-agent

systems is proposed in Section 5. The main result on the convergence properties of the closed-loop

multi-agent systems under the proposed control strategiesis provided in Section 5.4. Simulation

results are given in Section 7 demonstrating the usefulnessof the proposed schemes.

Standard notation will be used throughout the paper. LetR,R≥0,R>0 denote, respectively,

the set of real, non-negative real, and positive real. The positive definiteness (respectively, semi-

definiteness) of a matrixA is denoted byA ≻ 0 (respectively,A � 0). In ∈ R
n×n denotes

the identity matrix of sizen. 1n ∈ R
n denotes the column vector of sizen whose elements

are 1. |N | denotes the cardinality of the setN . For column vectorsva ∈ R
a, vb ∈ R

b, and

vc ∈ R
c, col(va, vb, vc) :=

[

vTa vTb vTc

]T

∈ R
a+b+c stacks all vectors to create one column

vector. ‖v‖ denotes the Euclidean norm (or the vector 2-norm) of a vectorv ∈ R
n. diag(A,B)

denotes the (generalized) block diagonal matrix ofA ∈ R
a×m, B ∈ R

b×n and is defined by

diag(A,B) =





A 0

0 B



 ∈ R
(a+b)×(m+n). Other notation will be explained in due course.
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Figure 2: The position of the sensor and states of roboti.

2 Multi-agent systems

In this section, we describe the resource-constrained multi-agent system regarding its individual

dynamics and limited communication capability in Sections2.1 and 2.2, respectively.

2.1 Individual dynamics

We assume thatn sensing agents are distributed over the surveillance regionQ ⊂ R
2. Q is assumed

to be a convex and compact set. The identity of each agent is indexed byI := {1, 2, · · · , n}.

Let qi(t) ∈ Q be the location of the sensor attached to agenti at time t ∈ R≥0. Let q :=

col(q1, q2, · · · , qn) ∈ R
2n be the configuration of the multi-agent system.

Consider a collection of multiple agents, each of which is a nonholonomic differentially driven

mobile agent as shown in Fig. 2. In this case, the equations ofmotion for mobile agenti [13, 14]



may be given by

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








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ṙxi(t)
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










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
















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



















+






















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0
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

























Fi(t)

τi(t)



 , (1)

whereri = [rxi, ryi]
T andψi denote the inertial position and the orientation of agenti, respectively.

vi andωi are linear and angular speeds, respectively.Fi andτi denote force and torque inputs.mi

andJi are the mass and the moment of inertia. In this paper, we need to control the sensor location.

Let the sensor location be at a point that is on a center line perpendicular to the wheel axis and

is ℓi distance away from the wheel axis, i.e.,‖qi(t) − ri(t)‖ = ℓi as shown in Fig. 2. The sensor

location can be described by

qi(t) = ri(t) + ℓi





cosψi(t)

sinψi(t)



 . (2)

By differentiatingqi(t) twice with respect to timet, we obtain

q̈i(t) =





−vi(t)ωi(t) sinψi(t)− ℓiω
2
i (t) cosψi(t)

vi(t)ωi(t) cosψi(t)− ℓiω
2
i (t) sinψi(t)





+





1
mi

cosψi(t) − ℓi
Ji
sinψi(t)

1
mi

sinψi(t)
ℓi
Ji
cosψi(t)









Fi(t)

τi(t)





=: A(t) +B(t)





Fi(t)

τi(t)



 .

(3)

SinceB(t) is nonsingular as long as‖qi(t)− ri(t)‖ = ℓi 6= 0, we can perform the output feedback

linearization at the sensor locationqi(t) using the output feedback linearizing control [13] given as

follows.




Fi(t)

τi(t)



 = B−1(t)× (ui(t)−A(t)) . (4)



With this feedback linearizing control in (4) being appliedto (3), we obtain thaẗqi(t) = ui(t). It

can be shown that the zero dynamics are stable [13] and differentiating (2) shows thatωi(t) → 0

andvi(t) → 0 asq̇i(t) → 0.

There exists a large class of holonomic vehicle models with some conditions [15, 16] that can

be output feedback linearized with respect to the sensor location to obtain the similar result. It

is shown that a dynamic model of a holonomic mobile robot withfour-powered wheels can be

linearized and decoupled [17].

Therefore, without loss of generality, we assume that the dynamics of sensing agenti (its sensor

location) is given by

q̇i(t) = pi(t),

ṗi(t) = ui(t),
(5)

wherepi(t) is the velocity of agenti andui(t) is the input of agenti. For the case of the non-

holonomic model described in (1), the proposed controlui(t) in this paper can be implemented by

Fi(t) andτi(t), which are obtained by pluggingui(t) in (4).

2.2 Limited communication capability

We use the graph notation in order to describe the group behavior of the multi-agent system based

on the limited communication capability of each agent. We assume that each agent can communi-

cate with its neighboring agents within a limited transmission range, which is given by a radius of

r. The neighborhood of agenti with a configuration ofq is defined byN (i, q) := {j ∈ I | (i, j) ∈

E(q)}. Therefore,(i, j) ∈ E(q) if and only if ‖qi(t) − qj(t)‖ ≤ r. We often useNi instead of

usingN (i, q) for notational simplicity. We defineN i as the union of indexi and indices of its

neighbors, i.e.,N i := {i} ∪ Ni. We use the adjacency matrixA := [aij ] of an undirected graph

G as defined in [1].A := [aij ] is symmetrical. The elementaij of adjacency matrix is defined

asaij = σw(ǫ − dij), with σw(y) = 1
1+e−wy , wheredij is a distance between neighboring agentj

and agenti itself, σw is the sigmoid function with constantsw > 0 andǫ > 0. The scalar graph

LaplacianL = [lij ] ∈ R
n×n is a matrix defined asL := D(A) − A, whereD(A) is a diagonal



matrix given by, i.e.,D(A) := diag(
∑n

j=1 aij). The 2-dimensional graph Laplacian is defined as

L̂2 := L⊗ I2, where⊗ is the Kronecker product.

3 Static scalar environmental field

When the dynamics of the environmental scalar field are much slower (e.g., biomass of harmful

algae blooms) than those of mobile agents, we may consider that the scalar field is static for the

purpose of finding peaks. Suppose that the scalar environmental field µ(ν) is generated by a

network of radial basis function [9]:

µ(ν) =

m
∑

j=1

φj(ν)θ
j = φT (ν)θ, (6)

whereφT (ν) andθ are defined respectively by

φT (ν) =
[

φ1(ν) φ2(ν) · · · φm(ν)
]

∈ R
1×m,

θ =
[

θ1 θ2 · · · θm
]T

∈ R
m×1.

(7)

Gaussian radial basis functionsφj(ν) are given by

φj(ν) =
1

βj
exp

(

−‖ν − ξj‖2

σ2
j

)

, ∀j ∈ M, (8)

whereM := {1, · · · , m}, σj is the width of the Gaussian basis andβj is a normalizing constant.

Centers of basis functions{ξj|j ∈M} are assumed to be uniformly distributed in the surveillance

regionQ.

One may use the gradient ascent control based on the estimated gradient ofµ(q) to find peaks.

To this end, we introduce some notations. The partial derivative of φ(x) ∈ R
m×1 with respect to

x ∈ R
2×1 evaluated atx∗ is denoted byφ′(x∗) and is given as follows.

φ′(x∗) :=
∂φ(x)

∂x

∣

∣

∣

x=x∗

∈ R
m×2.

The gradient of the field atqi is denoted by

∇µ(qi) =
∂µ(x)

∂x

∣

∣

∣

x=qi

∈ R
2×1. (9)



Using (6), (9) can be represented in terms ofθ,

∇µ(qi) =
∂φT (x)

∂x

∣

∣

∣

x=qi

θ = φ′T (qi)θ ∈ R
2×1. (10)

The estimate of∇µ(qi) based on̂θ is denoted by∇µ̂(qi).

4 The problem statement

We first review the motivations for our work. The first motivation is to estimate the scalar field

of interest and locate the peaks of the field for environmental monitoring. The mobile agent can

be equipped with a sensor to measure the scalar value of the field, e.g., Chlorophylla for gauging

the total biomass of algae. In a straightforward application, after finding peaks, the mobile robots

can perform a set of necessary tasks to neutralize and/or remove them. The second motivation is

to design scalable and distributed coordination algorithms for resource-constrained mobile sensor

networks. Recently, developing scalable and distributed estimation and coordination algorithms

for multi-agent systems using only local information from local neighboring agents has been one

of the most fundamental problems in coordinating mobile robotic sensors [1, 3, 4, 9]. This is an

important research direction such that the complexity of the algorithm will not increase as the

number of robotic sensors increases. Therefore, although each agent has limited capabilities, as a

group, they can perform various tasks at a level which is compatible to a small number of high-end

mobile agent. Finally, the conditions for which the convergence is guaranteed need to be prescribed

for users.

From the aforementioned motivations, the problem of this paper is stated as follows. For the

multi-agent system described in Section 2 and the scalar field model presented in Section 3, the

problem is to synthesize scalable and distributed coordination algorithms such that the multi-agent

system estimates the field and locates peaks of the field in a collective manner. Moreover, conver-

gence properties of the proposed coordination algorithms need to be analyzed and the conditions

for which the convergence is guaranteed need to be identified.



5 Coordination algorithms

In this section, we provide a solution to the problem formulated in Section 4. For agents to make

distributed sampling and to maintain the connectivity, a flocking algorithm as described in Sec-

tion 5.1 will be applied. The overall distributed adaptive control is proposed in Section 5.2 based

on recursive scalar field estimators. The collective closed-loop multi-agent system is formulated in

Section 5.3. Finally convergence properties of the multi-agent system under the proposed strategies

are analyzed in Section 5.4.

5.1 A distributed flocking algorithm

In order for multiple agents to sample a scalar field at spatially distributed locations simultaneously,

a group of mobile agents will be coordinated by a flocking algorithm [6, 2, 5, 9]. In addition,

swarming or flocking behavior helps to maintain the communication graph connected among the

group of agents. The algorithm consists of the three flockingrules: Cohesion: try to stay close

to neighbors; Separation: avoid collisions with neighbors; Alignment: try to match velocity with

neighbors.

We use attractive and repulsive potential functions similar to ones used in [5, 2, 9] to achieve

flocking rules of cohesion and separation. Toward this end, we use a collective potential function

[9]

U1(q) :=
∑

i

∑

j∈N (i,q),j 6=i

Uij(‖qi − qj‖
2)

=
∑

i

∑

j∈N (i,q),j 6=i

Uij(rij),
(11)

whererij := ‖qi − qj‖2. The pair-wise attractive/repulsive potential functionUij(·) in (11) is

defined by

Uij(rij) :=
1

2

(

ln(α + rij) +
α + d2

α + rij

)

, if rij < d20,

otherwise (i.e.,rij ≥ d20), it is defined according to the gradient of the potential, which will be

described shortly. Hereln(x) denotes the natural logarithm ofx to the basee. α, d ∈ R>0 and



d < d0. The gradient of the potential with respect toqi for agenti is given by

∇U1(qi) :=
∂U1(q)

∂q̃i

∣

∣

∣

q̃i=qi

=
∑

j 6=i

∂Uij(r)

∂r

∣

∣

∣

r=rij

(qi − qj)

=







∑

j 6=i

(rij−d2)(qi−qj)

(α+rij )2
if rij < d20

∑

j 6=i ρ
(√

rij−d0

|d1−d0|

)

‖d2
0
−d2‖

(α+d2
0
)2
(qi − qj) if rij ≥ d20,

whereρ : R≥0 → [0, 1] is the bump function [2]

ρ(z) :=



















1, z ∈ [0, h);

1
2

[

1 + cos
(

π
(z−h)
(1−h)

)]

, z ∈ [h, 1];

0, otherwise.

A potentialU2 [9] is also used to model the environment.U2 enforces each agent to stay inside

the closed and connected surveillance region inQ and prevents collisions with obstacles inQ.

We constructU2 such that it is radially unbounded inq, i.e., U2(q) → ∞ as‖q‖ → ∞. This

condition will be used for making a Lyapunov function candidate radially unbounded. Define the

total artificial potential by

U(q) := k1U1(q) + k2U2(q), (12)

wherek1, k2 ∈ R>0 are weighting factors.

The flocking rule of alignment will be implemented by adding velocity consensus that mini-

mizes a quadratic disagreement function. The quadratic disagreement functionΨG : R2n → R≥0

is used to evaluate the group disagreement in the network of agents

ΨG(p) :=
1

4

∑

(i,j)∈E(q)
aij‖pj − pi‖

2,

wherep := col(p1, p2, · · · , pn) ∈ R
2n. The disagreement function [2, 18] can be expressed via the

LaplacianL̂2: ΨG(p) =
1
2
pT L̂2p, and hence the gradient ofΨG(p) w.r.t. p is given by∇ΨG(p) =

L̂2p.

5.2 Distributed adaptive control

In this subsection, we propose a distributed adaptive control algorithm. The adaptive control law

for each agent will be generated using only local information from neighboring agents. Recall that



the dynamics of agenti in (5) is given by

q̇i(t) = pi(t),

ṗi(t) = ui(t),

whereui(t) is the input of agenti. The control inputui(t) is then proposed as follows.

ui(t) =−∇U(qi(t))−∇ΨG(pi(t))− kdipi(t)

+ k4φ
′T (qi(t))θ̂i(t),

(13)

where the first two terms of the right-hand side of (13) provide the swarming effort as discussed

in Section 5.1. The third term in (13) provides damping.θ̂i(t) is the estimate ofθ(t) by agenti

using a recursive parameter estimation algorithm. In what follows, two of such adaptation laws are

proposed.

To achieve a consensus between estimates, the gradient of the disagreement function atθ̂i(t)

will be used in the adaptation laws, which is given by

∇ΨG(θ̂i(t)) =
∑

j∈Ni

aij(q(t))(θ̂i(t)− θ̂j(t)),

here the quadratic disagreement functionΨG(θ̂d(t)): Rmn → R≥0 is defined as

ΨG(θ̂d(t)) =
1

4

∑

(i,j)∈E(q)
aij ‖ θ̂j(t)− θ̂i(t) ‖

2=
1

2
θ̂Td (t)L̂mθ̂d(t),

whereL̂m = L⊗ Im, andθ̂d(t) = col(θ̂1(t), · · · , θ̂n(t)).

To develop estimators, the error vectorei(t) of agenti between the estimated values and mea-

sured values is defined by

ei(t) = −

















µ̂i(qi(t))− µ(qi(t))

µ̂i(qj(t))− µ(qj(t))
...

µ̂i(qk(t))− µ(qk(t))

















,



and can be rewritten by

ei(t) = −

















φT (qi(t))θ̃i(t)

φT (qj(t))θ̃i(t)
...

φT (qk(t))θ̃i(t)

















= −Φi(t)θ̃i(t),

where

Φi(t) =

















φT (qi(t))

φT (qj(t))
...

φT (qk(t))

















∈ R
|N i|×m,

with j, · · · , k ∈ Ni.

With the aforementioned notations, we propose that agenti updateŝθi(t) based on the following

two adaptation laws.

• Using the gradient-based estimator,θ̂i(t) is updated by the following adaptation law.

˙̂
θi(t) = γiΦ

T
i (t)ei(t)− γik4φ

′(qi(t))pi(t)− k6γi∇ΨG(θ̂i(t)), (14)

whereγi is the estimation gain andk6 is a consensus gain for parameter estimates.

• Using the recursive least squares (RLS) estimator,θ̂i(t) is updated by the following adapta-

tion law.

˙̂
θi(t) =PiΦ

T
i (t)ei(t)− Pik4φ

′(qi(t))pi(t)

− k6Pi∇ΨG(θ̂i(t)),

Ṗi(t) =− Pi(t)Φ
T
i (t)Φi(t)Pi(t),

(15)

wherePi(t) is defined by

Pi(t) =

(
∫ t

0

ΦT
i (τ)Φi(τ)dτ

)−1

∈ R
m×m.



5.3 Collective dynamics of all agents

In this subsection, we derive the collective dynamics of allagents under the proposed coordination

algorithms using a collective cost function. The collective cost functionCd(q(t)) for all agents is

defined by

Cd(q(t)) = k4
∑

i∈I
[µmax − µ(qi(t))]

= k4
∑

i∈I
[µmax − φT (qi(t))θ].

The collective estimate ofCd(q(t)) by all agents at timet is Ĉd(q(t)) and is given by

Ĉd(q(t)) = k4
∑

i∈I
[µmax − µ̂i(qi(t))]

= k4
∑

i∈I
[µmax − φT (qi(t))θ̂i(t)],

where the estimate ofµ(ν) at ν in (6) by agenti is denoted bŷµi(ν) and is given aŝµi(ν) :=

φT (ν)θ̂i(t). The gradient ofCd at q(t) is given by

∇Cd(q(t)) = −k4

















φ′T (q1(t))

φ′T (q2(t))
...

φ′T (qn(t))

















θ = −Ad(t)θd,

whereθd := 1n ⊗ θ. Ad(t) is defined by

Ad(t) = k4diag(φ′T (q1(t)), · · · , φ
′T (qn(t))) ∈ R

2n×mn.

The collective estimate of∇Cd(q(t)) by all agents is denoted by∇Ĉd(q(t)) and is given by

∇Ĉd(q(t)) = −k4











φ′T (q1(t))θ̂1(t)
...

φ′T (qn(t))θ̂n(t)











= −Ad(t)θ̂d(t).

The collective dynamics of all agents from (5) and (13) are given by

q̇(t) = p(t),

ṗ(t) = −∇U(q(t))−∇ΨG(p(t))−Kdp(t)−∇Ĉd(q(t)),
(16)



whereq(t) = col(q1(t), · · · , qn(t)), andp(t) = col(p1(t), · · · , pn(t)).

The collective version of the adaptive law in (14) for all agents is given by

˙̂
θd(t) = ΓdΦ

T
d (t)ed(t)− ΓdA

T
d (t)p(t)− ΓdL̂mθ̂d(t), (17)

whereΓd = Γ⊗Im andΓ = ΓT ≻ 0 is the diagonal matrix given byΓ = diag(γ1, · · · , γn). Notice

thatL̂mθ̂d(t) = L̂mθ̃d(t) in (17). The collective errored(t) is defined as

ed(t) =











e1(t)
...

en(t)











=











−Φ1(t)θ̃1(t)
...

−Φn(t)θ̃n(t)











= −Φd(t)θ̃d(t), (18)

whereΦd(t) = diag(Φ1(t), · · · ,Φn(t)) ∈ R
(
∑

i∈I
|N i|)×mn.

The collective version of the adaptive law in (15) for all agents is given by

˙̂
θd(t) =− Pd(t)Φ

T
d (t)Φd(t)θ̃d(t)

− Pd(t)A
T
d (t)p(t)− Pd(t)L̂mθ̂d(t),

Ṗd(t) =− Pd(t)Φ
T
d (t)Φd(t)Pd(t).

(19)

wherePd(t) is defined byPd(t) = diag(P1(t), · · · , Pn(t)) ∈ R
mn×mn.

5.4 Convergence analysis

In this section, we present the results for convergence properties of the proposed multi-agent sys-

tems. To this end, we define the global performance cost function of the multi-agent system with

the gradient-based algorithm in (17)

Vd(q(t), p(t), θ̃d(t)) = U(q(t)) +
pT (t)p(t)

2
+ Cd(q(t)) +

θ̃Td (t)Γ
−1
d θ̃d(t)

2
, (20)

whereθ̃d(t) = col(θ̃1(t), · · · , θ̃n(t)) is the estimation error vector defined byθ̃d(t) := θ̂d(t) − θd.

The global performance cost function for the RLS algorithm in (19) is defined by

Vd(q(t), p(t), θ̃d(t)) = U(q(t)) +
pT (t)p(t)

2
+ Cd(q(t)) +

θ̃Td (t)P
−1
d (t)θ̃d(t)

2
. (21)

The collective performance cost function will be minimizedby agents. The convergence properties

of the multi-agent system is summarized by the following theorem.



Theorem 1 We consider the distributed control law in(13)based on the gradient-based estimator

in (14)(respectively, the RLS estimator in(15)) along with the global performance cost functionVd

in (20) (respectively,(21)). For any initial statex0 = col(q0, p0, θ̃d0) ∈ Dd, whereDd is a compact

set. LetDAd = {x ∈ D | Vd(x) ≤ a} be a level-set of the collective cost function. LetDcd be the

set of all points inDAd, wheredVd(x)
dt

= 0. Then every solution starting fromDAd approaches the

largest invariant setMd contained inDcd ast→ ∞.

Moreover, for the adaptive control using the gradient-based estimator (respectively, the RLS

estimator), if(L̂2 +Kd) and(ΦT
d (t)Φd(t) + L̂m) (respectively,(1

2
ΦT

d (t)Φd(t) + L̂m)) are positive

definite, then any pointx∗ = col(q∗, 0, 0) in Md is a critical point of the cost functionVd(x), which

implies thatx∗ is either a (local) minimum ofVd(x) or an inflection point,

∂Vd(x)

∂x

∣

∣

∣

∣

∣

x=x∗

= 0,

and θ̂d(t) converges toθd ast→ ∞.

Proof of Theorem 1 in the case of the gradient-based estimator.

Using (16), the time derivative ofVd(x) in (20) is obtained by

V̇d =





∇U(q(t)) +∇Cd(q(t))

p(t)





T 



p(t)

−∇U(q(t)) −∇ΨG(p(t))−Kdp(t)−∇Ĉd(q(t))





+ θ̃Td (t)Γ
−1
d

˙̂
θd(t)

=− pT (t)(L̂2 +Kd)p(t) + θ̃Td (t)(A
T
d (t)p(t) + Γ−1

d

˙̂
θd(t)).

(22)

With (17) and (22), we obtain

V̇d = −pT (t)(L̂2 +Kd)p(t)− θ̃Td (t)(Φ
T
d (t)Φd(t) + L̂m)θ̃d(t) ≤ 0. (23)

Let x(t) = col(q(t), p(t), θ̃d(t)). From (20), we conclude thatVd(x(t)) is radially-unbounded, i.e.,

Vd(x(t)) → ∞ as‖x(t)‖ → ∞. Hence,DAd = {x(t) | Vd(x(t)) ≤ a} is bounded andDAd with

d
dt
Vd(x) ≤ 0 in (23) for all x ∈ DAd is a positively invariant set. By LaSalle’s invariant principle

every pointx(t) in DAd approachesMd included inDcd which is given by

Md := {x(t) | V̇d = −pT (t)(L̂2 +Kd)p(t)− θ̃Td (t)(Φ
T
d (t)Φd(t) + L̂m)θ̃d(t) = 0}, (24)



ast→ ∞. Letx∗ be a solution that belongs toDcd. If (L̂2+Kd) ≻ 0 and(ΦT
d (t)Φd(t)+ L̂m) ≻ 0,

∀x ∈ Dd, from (24), any pointx∗ in Md is the form ofx∗(t) = col(q∗(t), p∗ ≡ 0, θ̃∗d ≡ 0).

θ̃∗d ≡ 0 ⇒ 0 ≡ θ̂∗d(t)− θd ⇒ ∇Ĉd(q
∗) ≡ ∇Cd(q

∗).

From (16), we have

θ̃∗d ≡ 0, p∗(t) ≡ 0 ⇒ q̇∗(t) ≡ 0 ⇒ 0 ≡ −∇U(q∗)−∇Ĉd(q
∗).

This implies thatx∗ is a critical point of the cost functionVd(x) andθ̂d(t) converges toθd. QED.

Proof of Theorem 1 in the case of the RLS estimator.

Using (16), the time derivative ofVd(x) in (21) is obtained by

V̇d =





∇U(q(t)) +∇Cd(q(t))

p(t)





T 



p(t)

−∇U(q(t)) −∇ΨG(p(t))−Kdp(t)−∇Ĉd(q(t))





+ θ̃Td (t)P
−1
d (t)

˙̂
θd(t) +

θ̃Td (t)Ṗ
−1
d θ̃d

2
(t)

=− pT (t)(L̂2 +Kd)p(t)

+ θ̃Td (t)(A
T
d (t)p(t) + P−1

d (t)
˙̂
θd(t))

+
1

2
θ̃Td (t)

dP−1
d (t)

dt
θ̃d(t).

(25)

With (19) and (25), we obtain

V̇d = −pT (t)(L̂2 +Kd)p(t)− θ̃Td (t)

(

1

2
ΦT

d (t)Φd(t) + L̂m

)

θ̃d(t) ≤ 0. (26)

The rest of the proof follows as in the case of the gradient estimator. QED.

6 A sampling scheme for helping convergence

To improve the possibility of satisfying the sufficient conditions of convergence in Theorem 1, we

provide a sampling scheme that will help on makingΦT
d (t)Φd(t) positive definite.



Table 1: Parameters in the simulation

Parameters Values

Number of agentsn 30

Number of basis functionsm 9

Surveillance regionQ [0, 3]2

(d, d0, d1, r) (0.3, 0.39, 0.5, 0.5)

(k1, k2, k4, k6) (5, 1, 1, 1)

kd 5I2n

P (0) = Γ 0.5Im

θ̂i(0) 0m×1

α 0.05

In this sampling scheme, at every sampling timet, a fixed number (m) of measurements sam-

pled previously will be augmented to the fresh measurementsavailable at timet for agenti. The

selection of suchm additional measurements at timet for agenti is as follows.

q̄ij(t) = arg min
q∈Ωi(t)

‖q − ξj‖, ∀j ∈M, (27)

whereM := {1, · · · , m} andξj is the center location of thej-th kernel as defined in (8).Ωi(t) is

defined by

Ωi(t) :=





⋃

k∈N̄i(t)

{q̄ij(t
−) | j ∈M}



 ∪





⋃

k∈N̄i(t−)

qk(t
−)



 ,

wheret− is the sampling time taken prior tot. Notice that this selection process in (27) is scalable

and distributed.

ExpandedΦi(t) due to the the augmented sampled data at timet is as follows.

Φi(t) =
[

φ(qi(t)) · · · φ(q̄i1(t)) · · · φ(q̄im(t))
]T

∈ R
|N i+m|×m.



7 Simulation results

We have applied the proposed distributed adaptive control to fully actuated nonholonomic differen-

tially driven mobile robots introduced in Section 2.1 underdifferent conditions. For the numerical

simulation study, two scalar fields illustrated as color maps in Fig. 3 were generated by the model

in (6) with nine radial basis functions, i.e.,m = 9. Agents were launched at a set of randomly

distributed initial poses (positions and angles). Two setsof scalar fields and initial poses (2 × 2

combinatorial scenarios) were selected and used for all simulations for a fair comparison. Initial

poses of agents and scalar fields have been named 1 and 2 for more clarification. A limited trans-

mission radius was chosen to ber = 0.5. The initial value for the parameter vector of each agent

was given as a zero vector, i.e.,θ̂i(0) = 0m×1 ∈ R
m. Table 1 shows the parameters commonly

used for the numerical evaluation.

7.1 Gradient and RLS estimators

Figs. 3(a), (b), (c), and (d) show trajectories of agents with the distributed adaptive control using

the gradient-based estimator under initial conditions 1 and 2 and fields 1 and 2 (2 × 2 scenarios).

The trajectories of robots are marked by snapshots of poses at t = 0 sec.,t = 100 sec., and

t = 1000 sec., by white, magenta, and black arrowheads, respectively, showing their positions and

heading angles. The additional sampling positions are marked by stars (∗). Each agent runs its own

control based on its own estimation ofθ fusing its and neighbors’ measurements in a distributed

manner.

To evaluate the convergence rate of the parameter estimation for each agent, we compute the

error norm‖θ̃i(t)‖, whereθ̃i(t) := θ̂i(t)− θ for agenti, and plot‖θ̃i(t)‖ for all agentsi ∈ I with

respect to timet as in Figs. 4(a), (b), (c), and (d) for adaptive control with the gradient-based under

2× 2 combinatorial scenarios.

Under the limited communication range, different groups ofagents are formed to share mea-

surements and interact each other in a distributed fashion.Therefore, the final configuration and

convergence rate of each agent will depend on the initial positions of the multi-agent system and

the uncertain scalar field as shown in Figs. 3 and 4. In particular, comparing Fig. 3(a) and Fig. 3(c),



it is observed that initial poses of agents play an importantrole on the final configuration of agents.

For example, the initial positions of agents are separated in two groups in Fig. 3(c), therefore these

two groups cannot communicate, resulting that one group of agents converge to a closest local max-

imum. This can be also seen in Figs. 4(a) and (c) in which parameter estimates by agents Fig. 4(c)

did not converge to the correct parameters since the communication graph is not connected due

to the limited communication range and the initial poses of agents. The pairs of behaviors under

initial poses 1 and 2 as shown in Fig. 3(b) and Fig. 3(d), and Fig. 4(b) and Fig. 4(d) clearly show

the similar effect of the initial positions of robots on the final configuration of agents.

Figs. 5(a), (b), (c), and (d) show trajectories of agents using distributed adaptive control based

on the RLS estimator under2 × 2 combinatorial scenarios. Comparing Figs. 3 and 5, there is

not too much difference between trajectories obtained withgradient-based and RLS estimators.

Figs. 6(a), (b), (c), and (d) show the parameter convergencerate of each agent using distributed

adaptive control based on the RLS estimator under2× 2 combinatorial scenarios.

From simulation results in Figs. 3, 4, 5, and 6, we see that agents with distributed adaptive

control and learning algorithms successfully found major peaks of the uncertain fields. Note again

that some of agents would converge to the local minima of the field.

7.2 Without the proposed sampling scheme

To evaluate the effectiveness of the sampling scheme proposed in (27), we compare distributed

adaptive control based on the gradient-based estimator with and without the sampling scheme.

Trajectories of agents with the distributed adaptive control based on the gradient-based esti-

mator with using sampling scheme proposed in (27) are shown in Figs. 3(a), (b), (c), and (d) and

ones without using sampling scheme are shown in Figs. 7(a), (b), (c), and (d) over2 × 2 combi-

natorial scenarios. The multi-agent system with the proposed sampling scheme outperforms the

multi-agent system without the sampling scheme as can be seen clearly by comparing parameter

error convergence rates in Figs. 4 and 8.



7.3 Randomized initial values forθ̂i(0)

Each agent starts by an initial guess ofθ̂i(0) and recursively updates it by new measurements

collected from itself and its neighbors. Using zero initialconditions may be plausible in detecting

accidental release of toxic chemical plumes, which is not supposed to be found in the surveillance

region in a normal situation. On the other hand, using randomized initial conditions can be viewed

as exploratory behaviors by dispatching multiple agents inrandom directions initially to find peaks

rather than letting them move when they find gradient of the field, i.e., the case with zero initial

conditions.

So far, we have used initial valueŝθi(0) = 0m×1 ∈ R
m for all simulations under all scenarios

illustrated in Figs. 3, 4, 5, and 7.

In order to show the effect of randomized initial values forθ̂i(0), we have performed such sim-

ulations with randomized initial values for̂θi(0) and their simulation results are shown in Figs. 9

and 10.

In this case, we have observed that the multi-agent system successfully found major peaks,

showing similar behaviors and convergence results with respect to the previous results shown in

Figs. 3 and 4. We also observed that the simulation results under the randomized initial parameter

values yield more consistent final configurations with respect to different initial poses.

8 Conclusions

In this paper, we designed and analyzed a class of multi-agent systems that locate peaks of static

scalar fields of interest based on adaptive control. Each agent was driven by swarming and gradient

ascent efforts based on its own recursively estimated field via locally collected measurements. The

convergence properties of the proposed multi-agent systems were analyzed. A sampling scheme to

help the convergence was provided. The simulation results under different scenarios matched well

with the predicted behaviors from the convergence analysis, and demonstrated the usefulness of the

proposed coordination and sampling algorithms. The proposed multi-agent systems and coordina-

tion algorithms were developed under a set of assumptions such as fully actuated nonholonomic



(a) (b)

(c) (d)

Figure 3: Trajectories of agents with the distributed adaptive control based on the gradient-based

estimator. The trajectories of robots are marked by snapshots of poses att = 0 sec.,t = 100 sec.,

andt = 1000 sec., by white, magenta, and black arrowheads, respectively, showing their positions

and heading angles. The additional sampling positions are marked by stars (∗). (a) initial pose 1

and field 1, (b) initial pose 1 and field 2, (c) initial pose 2 andfield 1, (d) initial pose 2 and field

2. Horizontal and vertical and axes are x and y coordinates respectively and the background color

plot shows the scalar field.



(a) (b)

(c) (d)

Figure 4: The norm of parameter estimation error, i.e.,{‖θ̃i(t)‖} by each agent with the distributed

adaptive control based on the gradient-based estimator v.s. time. (a) initial pose 1 and field 1, (b)

initial pose 1 and field 2, (c) initial pose 2 and field 1, (d) initial pose 2 and field 2.



(a) (b)

(c) (d)

Figure 5: Trajectories of agents with the distributed adaptive control based on the RLS estimator.

(a) initial pose 1 and field 1, (b) initial pose 1 and field 2, (c)initial pose 2 and field 1, (d) initial

pose 2 and field 2. The same notations are used as in Fig. 3(a).



(a) (b)

(c) (d)

Figure 6: The norm of parameter estimation error, i.e.,{‖θ̃i(t)‖} by each agent with the distributed

adaptive control based on the RLS estimator v.s. time. (a) initial pose 1 and field 1, (b) initial pose

1 and field 2, (c) initial pose 2 and field 1, (d) initial pose 2 and field 2.



(a) (b)

(c) (d)

Figure 7: Trajectories of agents with the distributed adaptive control based on the gradient-based

estimator without using sampling scheme proposed in (27). (a) initial pose 1 and field 1, (b) initial

pose 1 and field 2, (c) initial pose 2 and field 1, (d) initial pose 2 and field 2. The same notations

are used as in Fig. 3(a).



(a) (b)

(c) (d)

Figure 8: The norm of parameter estimation error, i.e.,{‖θ̃i(t)‖} by each agent with the distributed

adaptive control based on the gradient-based estimator without using sampling scheme v.s. time.

(a) initial pose 1 and field 1, (b) initial pose 1 and field 2, (c)initial pose 2 and field 1, (d) initial

pose 2 and field 2.



(a) (b)

(c) (d)

Figure 9: Trajectories of agents with the distributed adaptive control based on the gradient-based

estimator with random initial values for̂θi(0). (a) initial pose 1 and field 1, (b) initial pose 1 and

field 2, (c) initial pose 2 and field 1, (d) initial pose 2 and field 2. The same notations are used as

in Fig. 3(a).



(a) (b)

(c) (d)

Figure 10: The norm of parameter estimation error, i.e.,{‖θ̃i(t)‖} by each agent with the dis-

tributed adaptive control based on the gradient-based estimator and random initial values for̂θi(0)

v.s. time. (a) initial pose 1 and field 1, (b) initial pose 1 andfield 2, (c) initial pose 2 and field 1,

(d) initial pose 2 and field 2.



differentially driven mobile robots, no sensor noise and a simple communication model (r-disk).

Therefore, the future work is to extend the proposed approach in more realistic conditions and

develop the stochastic version of this problem, taking intoaccount the measurement sensor noise.

Another future direction is to apply the proposed coordination algorithms to a group of robotic

boats, which are being developed by the Professor Choi’s group at Michigan State University.
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