Adaptive Control of Multi-Agent Systems for

Finding Peaks of Uncertain Static Fields

Mahdi Jadaliha, Joonho Leand Jongeun Choi

Abstract

In this paper, we design and analyze a class of multi-agestes)s that locate peaks of
uncertain static fields in a distributed and scalable man@er approach builds on adaptive
control. The scalar field of interest is assumed to be gezbiay a radial basis network func-
tion. Each agent is driven by swarming and gradient ascéartebased on its own recursively
estimated field via locally collected measurements byfitzedl its neighboring agents. The
convergence properties of the proposed multi-agent systemanalyzed. We also propose a
sampling scheme to facilitate the convergence. We providalation results by applying our
proposed algorithms to fully actuated nonholonomic défetally driven mobile robots under
different conditions. The extensive simulation resultsahavell with the predicted behaviors
from the convergence analysis, and illustrate the usefaloéthe proposed coordination and

sampling algorithms.
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1 Introduction

In recent years, due to significant progress in sensing, aomuation, and embedded-system tech-
nologies, many research activities have been focused carélas of mobile sensor networks and
multi-agent systems [1, 2, 3, 4]. Mobile sensor networksallgdiorm an ad-hoc wireless commu-
nication network in which each agent shares informatiom witighboring agents within a short
communication range, with limited memory and computatigrmaver. Although each agent has
limited capabilities, as a group, the multi-agent systerg peaform various tasks at a level which
is compatible to a small number of high-end mobile agentsortter to achieve a global goal
such as exploration, surveillance, and environmental tagng, mobile sensing agents require
distributed coordination to deal with uncertain enviromtse

Decentralized and adaptive control algorithms have begmgsed in [4] for networks of robots
to converge to optimal sensing configurations while sirmdtausly learning the distribution of
sensory information in the environment.

Tanner [5] and Olfati-Saber [2] developed comprehensiayaes of the flocking algorithm
by Reynolds [6]. In general, the collective swarm behavairsirds and fish are known to be the
outcomes of natural optimization [7, 8]. These flocking aiilpons have been used to move mobile
sensor networks in groups [9].

Among other problems in mobile sensor networks, finding pezka scalar field of interest
has attracted much attention of control engineers [10, 219]L This is due to numerous appli-
cations of tracking toxins by robotic sensors in uncertaivirenments. Such demand exists in
environmental monitoring where a dominant method for nayimg of environmental variables
(e.g., biomass of harmful algal blooms) is still manual skmgpfollowed by lab analysis. For
example, each robotic sensor may carry sensors for sampingplue-green algae (cyanobacte-
ria), Chlorophylla (total biomass of algae/phytoplankton) and dissolved erytp investigate the
growth of harmful algal blooms in fresh water. The detrinaetffects of harmful environmental
variables can be seen from satellite images in a large sdttileawow resolution. For example,
Figs. 1(a) and (b) show the dead zone created by harmfullaligains and the oil slick in the Gulf

of Mexico, respectively.



(@) (b)
Figure 1: (a) Dead zone created by algal blooms in the Gulf exikb (NASA). (b) The oil slick

as seen from space by NASA's Terra satellite on May 24, 20h0tPcourtesy of NASA).

The cooperative network of agents that performs adaptiadignt climbing in a distributed
environment was presented in [10, 11]. The centralized otwan adapt its configuration in
response to the sensed environment in order to optimizeatient climb.

In [9], distributed learning and control algorithms are pwsed to be executed by each agent
independently to estimate a scalar field of interest fronsynoneasurements and to coordinate
multiple agents in a distributed manner to discover peakb@field. Each mobile agent moves
towards peaks of the field using the gradient of its estiméttd while avoiding collision and
maintaining communication connectivity. The convergepuogperties of the resulting collective
stochastic algorithm were analyzed using the Ljung’s ODgregch. In the analysis, the estima-
tion error dynamics have been averaged out under sufficoerditons and so only the ODE of the
controlled multi-agent system dynamics could be consitlere

In this paper, we design and analyze a class of multi-agestésys that locate peaks of static
scalar fields in a distributed and scalable manner. Our agprbuilds on adaptive control. The
scalar field of interest is assumed to be generated by a radsd network function. We use
the flocking algorithm for robotic sensors to make spatidlitributed sampling and to maintain
communication connectivity. The proposed distributedpéiia control consists of the swarming
effort and the gradient ascent motion control based on tth@sevely estimated field. The associ-

ated recursive estimation laws have been developed byegtadased and recursive least squares



(RLS) algorithms. In contrast to [9], the closed-loop dymasrcombining the motion control of
the multi-agent system and the parameter estimation eyrardics under proposed strategies have
been analyzed. A set of sufficient conditions for which thevesgence of the closed-loop multi-
agent system is achieved has been provided. To facilitetsubcessful convergence, we provide
an additional scalable and distributed sampling stratbgy keeps selective past measurements.
We also provide simulation results by applying our propadgdrithms to fully actuated nonholo-
nomic differentially driven mobile robots under differectinditions. The extensive simulation
study illustrates the effectiveness of the proposed scheme

The remainder of this paper is organized as follows. Modegltfe resource-constrained multi-
agent systems and the static environmental field are intextlin Sections 2 and 3, respectively.
From the models and the motivations, the problem of syrtivegiand analyzing coordination
algorithms is formulated in Section 4. The proposed digtadd adaptive control for multi-agent
systems is proposed in Section 5. The main result on the ogenee properties of the closed-loop
multi-agent systems under the proposed control stratégi@ovided in Section 5.4. Simulation
results are given in Section 7 demonstrating the usefulbfed® proposed schemes.

Standard notation will be used throughout the paper. Rk, R., denote, respectively,
the set of real, non-negative real, and positive real. Tleitipe definiteness (respectively, semi-
definiteness) of a matrid is denoted byA >~ 0 (respectively,A > 0). I, € R™" denotes
the identity matrix of sizen. 1, € R"™ denotes the column vector of sizewhose elements
arel. |N| denotes the cardinality of the sat. For column vectors, € R%, v, € R’ and
ve € Re, col(vg, vy, ve) = [ ol of T ]T € Retbte stacks all vectors to create one column
vector. ||v|| denotes the Euclidean norm (or the vector 2-norm) of a vecterR". diag A, B)

denotes the (generalized) block diagonal matrixofe R**™, B ¢ R®™ and is defined by

A 0
diag(4, B) = € Ra+0x(m+n) - QOther notation will be explained in due course.
0 B



Figure 2: The position of the sensor and states of rabot
2 Multi-agent systems

In this section, we describe the resource-constrainediagdint system regarding its individual

dynamics and limited communication capability in Secti@risand 2.2, respectively.

2.1 Individual dynamics

We assume that sensing agents are distributed over the surveillancemégia R2. () is assumed
to be a convex and compact set. The identity of each agentlexéd byZ := {1,2,--- ,n}.
Let ¢;(t) € @ be the location of the sensor attached to ageat timet € R>,. Letq :=
col(qi, g2, - -, gn) € R?" be the configuration of the multi-agent system.

Consider a collection of multiple agents, each of which isahmlonomic differentially driven

mobile agent as shown in Fig. 2. In this case, the equationsotibn for mobile agent [13, 14]



may be given by

Toi () ] [ v; cos Y (t) | [ 0 0 |
ryz(t) v; sin ; (t) 0 0 )
i(t) | = w;(?) +1 0 0 o | (1)
(1) 0 Lo | L"
wi) || 0 | Lo 7 |

wherer; = [r,;, r,;]7 andy; denote the inertial position and the orientation of agergspectively.
v; andw; are linear and angular speeds, respectivEl\andr; denote force and torque inputs,;
and/J; are the mass and the moment of inertia. In this paper, we oemnhtrol the sensor location.
Let the sensor location be at a point that is on a center linegmelicular to the wheel axis and
is ¢; distance away from the wheel axis, i.kg;(t) — r;(t)|| = ¢; as shown in Fig. 2. The sensor

location can be described by

Gt = (1) + 6 |: Cf)S 10 ] _ 2)
sin ¢ (1)
By differentiatingq;(¢) twice with respect to time, we obtain
—vi(t)wi(t) sini(t) — liw? (t) cos ¥i(t)
mﬂ%)—&ﬁ@mmm®
7,% cosi(t) —Lsingy(t) | | Fi() .
mi sin ; () ﬁ cos 1;(t) 7;(t)
i(t
—aw B | Y
7i(1)

SinceB(t) is nonsingular as long di; (t) — r;(t)|| = ¢; # 0, we can perform the output feedback

linearization at the sensor locatigit) using the output feedback linearizing control [13] given as

[ Fi(t)

follows.

= B7'(t) x (u;(t) — A(t)). (4)




With this feedback linearizing control in (4) being applied(3), we obtain thafj;(t) = w,;(¢). It
can be shown that the zero dynamics are stable [13] andefiffieting (2) shows that;(t) — 0
andv;(t) — 0 asg;(t) — 0.

There exists a large class of holonomic vehicle models vathesconditions [15, 16] that can
be output feedback linearized with respect to the sensatitmt to obtain the similar result. It
is shown that a dynamic model of a holonomic mobile robot Viathr-powered wheels can be
linearized and decoupled [17].

Therefore, without loss of generality, we assume that tmadhics of sensing agenfits sensor

location) is given by

¢(t) = pi(t),

pi(t) = ui(t),

(5)

wherep;(t) is the velocity of agent andu;(t) is the input of agent. For the case of the non-
holonomic model described in (1), the proposed contr@) in this paper can be implemented by

F;(t) and;(t), which are obtained by plugging(¢) in (4).

2.2 Limited communication capability

We use the graph notation in order to describe the group lbhaithe multi-agent system based
on the limited communication capability of each agent. Waua®e that each agent can communi-
cate with its neighboring agents within a limited transnoissange, which is given by a radius of
r. The neighborhood of agentvith a configuration of; is defined byN (i,¢) .= {j € Z|(i,]j) €
E(q)}. Therefore,(i,j) € E(q) if and only if ||g:(t) — ¢;(t)|| < r. We often useV; instead of
using (4, q) for notational simplicity. We defind/; as the union of index and indices of its
neighbors, i.e.N; := {i} UN;. We use the adjacency matri := [a;;] of an undirected graph
G as defined in [1].A := [a;;] is symmetrical. The element; of adjacency matrix is defined
asa;; = o,(e — d;j;), with o, (y) = He%wy, whered;; is a distance between neighboring aggent
and agent itself, o, is the sigmoid function with constants > 0 ande > 0. The scalar graph

LaplacianL = [/;;] € R™*" is a matrix defined ad := D(A) — A, whereD(A) is a diagonal



matrix given by, i.e..D(A) := diag}_’_, a;;). The 2-dimensional graph Laplacian is defined as

Lo, := L ® I, where® is the Kronecker product.

3 Static scalar environmental field

When the dynamics of the environmental scalar field are mlohes (e.g., biomass of harmful
algae blooms) than those of mobile agents, we may considetria scalar field is static for the
purpose of finding peaks. Suppose that the scalar enviralaiiéeld () is generated by a

network of radial basis function [9]:
n(v) =Y o;)¢ =" ()6, (6)
j=1
whereg! (v) andd are defined respectively by

)= 60) b)) o dal) | R

T (7)
9:[91 02 ... em} c R™1,
Gaussian radial basis functiong(v) are given by
1 —llv =&Y .
. S M
¢;(v) 5, P < 72 ,Vj €M, (8)
whereM := {1,---,m}, o; is the width of the Gaussian basis afdis a normalizing constant.

Centers of basis functiong;|; € M} are assumed to be uniformly distributed in the surveillance
regionq).

One may use the gradient ascent control based on the edigraidient ofu(q) to find peaks.
To this end, we introduce some notations. The partial dévivaf ¢(z) € R™*! with respect to

r € R**! evaluated at* is denoted by’ (z*) and is given as follows.

_ 99()

1 kN . mx2
'(x%): 9 :E:m*ER )
The gradient of the field af; is denoted by
0
Vala) = 0| emr (©)




Using (6), (9) can be represented in termg of

99" (x) ) 9 — ¢/T(qi)9 c R2xL. (10)

837 r=q;

Viu(g) =

The estimate o¥ 1.(¢;) based orf is denoted by /i(q;).

4  The problem statement

We first review the motivations for our work. The first motiweet is to estimate the scalar field
of interest and locate the peaks of the field for environmeantaitoring. The mobile agent can
be equipped with a sensor to measure the scalar value of ktheefig., Chlorophylh for gauging
the total biomass of algae. In a straightforward applicatadter finding peaks, the mobile robots
can perform a set of necessary tasks to neutralize and/aveethem. The second motivation is
to design scalable and distributed coordination algorgiion resource-constrained mobile sensor
networks. Recently, developing scalable and distributgoination and coordination algorithms
for multi-agent systems using only local information froocél neighboring agents has been one
of the most fundamental problems in coordinating mobileotmbsensors [1, 3, 4, 9]. This is an
important research direction such that the complexity ef algorithm will not increase as the
number of robotic sensors increases. Therefore, althoag &gent has limited capabilities, as a
group, they can perform various tasks at a level which is aiiole to a small number of high-end
mobile agent. Finally, the conditions for which the conasrge is guaranteed need to be prescribed
for users.

From the aforementioned motivations, the problem of thigepas stated as follows. For the
multi-agent system described in Section 2 and the scalak rireldel presented in Section 3, the
problem is to synthesize scalable and distributed cootidimalgorithms such that the multi-agent
system estimates the field and locates peaks of the field ilextree manner. Moreover, conver-
gence properties of the proposed coordination algoritheesiio be analyzed and the conditions

for which the convergence is guaranteed need to be identified



5 Coordination algorithms

In this section, we provide a solution to the problem fornediein Section 4. For agents to make
distributed sampling and to maintain the connectivity, @Kiog algorithm as described in Sec-
tion 5.1 will be applied. The overall distributed adaptivatrol is proposed in Section 5.2 based
on recursive scalar field estimators. The collective cldseg multi-agent system is formulated in
Section 5.3. Finally convergence properties of the mgard system under the proposed strategies

are analyzed in Section 5.4.

5.1 Adistributed flocking algorithm

In order for multiple agents to sample a scalar field at sfhatisstributed locations simultaneously,
a group of mobile agents will be coordinated by a flocking atp [6, 2, 5, 9]. In addition,
swarming or flocking behavior helps to maintain the commaition graph connected among the
group of agents. The algorithm consists of the three flockihdgs: Cohesion: try to stay close
to neighbors; Separation: avoid collisions with neighb&iggnment: try to match velocity with
neighbors.

We use attractive and repulsive potential functions simidaones used in [5, 2, 9] to achieve

flocking rules of cohesion and separation. Toward this erdyge a collective potential function

[9]

Ulg) =Y > Uylla—alP)

i JEN(iq).i#i

(11)
=Y > Uylry)
i JEN(4,9),570
wherer;; := |l¢; — ¢;]|>. The pair-wise attractive/repulsive potential functiy(-) in (11) is
defined by
1 +d*\ .
Uij(rij) = 5 (lﬂ(a +7ij) + z T”) i 7y < d,
]

otherwise (i.e.y;; > d3), it is defined according to the gradient of the potentialjcltwill be

described shortly. Herl(x) denotes the natural logarithm ofto the base.. «,d € R., and



d < dy. The gradient of the potential with respecttdor agent; is given by

8U1(q) aUZ(T)
VUi(g:) == T Tjr r_r__(%‘ —qj)
) qi=4a; i =Tij
Tij—d2 i —q5 H
D if ri; < dj

VTij—do \ || dg—d?|| ; 2
E#zﬂ ( |d1J—dg| ) (ofi—d%)2 (@ —q;) ifry > dg,

wherep : R>o — [0, 1] is the bump function [2]

1, z €0, h);
p(z) = % [1 + cos (7‘(‘8:2;)] , 2 € [h,1];
0, otherwise.

A potentialU; [9] is also used to model the environmed&it. enforces each agent to stay inside
the closed and connected surveillance regio@iand prevents collisions with obstacles@h
We constructl/; such that it is radially unbounded ip i.e., Us(q) — oo as||q|| — oo. This
condition will be used for making a Lyapunov function carat&radially unbounded. Define the
total artificial potential by

U(q) == k1Ui(q) + k2Us(q), (12)

whereky, k; € R. o are weighting factors.
The flocking rule of alignment will be implemented by addinglocity consensus that mini-
mizes a quadratic disagreement function. The quadratigdiement functiod : R*" — R

is used to evaluate the group disagreement in the networgesfta

1
Velp) = > ayllp - pill*
(4.9)€€(a)
wherep := col(py, pa, - - - , p,) € R?*". The disagreement function [2, 18] can be expressed via the

LaplacianL,: Ua(p) = %pTigp, and hence the gradient &f;(p) w.r.t. p is given byV ¥ (p) =

[Azgp.
5.2 Distributed adaptive control

In this subsection, we propose a distributed adaptive obalgorithm. The adaptive control law

for each agent will be generated using only local informrafrom neighboring agents. Recall that



the dynamics of ageritin (5) is given by
@i(t) = pi(t),
pi(t) = wi(t),
whereu;(t) is the input of agent. The control inputz;(¢) is then proposed as follows.
ui(t) = = VU(q:(t) = V¥ (pi(1) — kapi()
+ kat (qi())6(t),

where the first two terms of the right-hand side of (13) preuvide swarming effort as discussed

(13)

in Section 5.1. The third term in (13) provides dampirg(t) is the estimate of (¢) by agent;

using a recursive parameter estimation algorithm. In wblaws, two of such adaptation laws are

proposed.
To achieve a consensus between estimates, the gradierd distgreement function af(¢)

will be used in the adaptation laws, which is given by

VWa(0:(1)) = Y ay(a(t)(0:(t) — 0;(1)),

here the quadratic disagreement functingn(6,(t)): R™ — R, is defined as
R R Tar o n
Ve(la(t) =7 D aiy | 0;(t) = 0i(t) |*= 504 (8) Lnba(t),
(4,5)€€(q)

whereL,, = L @ I,,, andf,(t) = col(f,(t), - - - , 0, (t)).
To develop estimators, the error vectgft) of agenti between the estimated values and mea-

sured values is defined by




and can be rewritten by

where

with 7,--- k€ V.
With the aforementioned notations, we propose that a’gqnﬂateséi(t) based on the following

two adaptation laws.

e Using the gradient-based estimat‘i)(;f) is updated by the following adaptation law.

~

0;(t) = @7 (t)ei(t) — vikad (@:(1))pi(t) — ko1 VUG (0(1)), (14)
where~; is the estimation gain anid; is a consensus gain for parameter estimates.

e Using the recursive least squares (RLS) estimat6t) is updated by the following adapta-

tion law.

Bi(t) =P®T (t)eu(t) — Pikad! (a:(1))pi(2)
— ke PV UG (0,(1)), (15)
Bi(t) = — B(t)®] (t)®;(t) Pi(t),

whereP;(t) is defined by

P(t) = < /O t @?(T)(I)i(f)df) e



5.3 Collective dynamics of all agents

In this subsection, we derive the collective dynamics ohg#nts under the proposed coordination
algorithms using a collective cost function. The colleetoost functionC;(¢(t)) for all agents is
defined by

Cd(q(t)) = ]{34 Z[Mmam - M(%(t))]
= k‘4 Z[:uma:c - ¢T(qz (t))@]

1€L

The collective estimate af,;(¢(t)) by all agents at timeis Cy(¢(t)) and is given by

Calq(t)) = k4 Z[Mmax — f1i(qi(t))]
= k‘4 Z[Mmaz - ¢T(QZ (t))él (t)]a

1€
where the estimate qgf(v) atv in (6) by agent; is denoted byi;(v) and is given agi;(v) =
¢"(v)0;(t). The gradient of’, at¢(t) is given by

[ 5T ((1))

veuan) - -k | Lo a0

| 67 (a(1)

whered,; := 1, ® 0. Ay(t) is defined by

Aa(t) = kudiag ¢ (a1(1)), -+, ¢ (gu(t))) € RZX™™
The collective estimate o7 C,;(¢(t)) by all agents is denoted ByC,(¢(¢)) and is given by
& (qu(t))01(t)
VCalq(t)) = —ky : = —Ay(t)84(2).
" (qn(1))0n (t)
The collective dynamics of all agents from (5) and (13) axegiby
q(t) = p(),

—VU(q(t)) — VUa(p(t)) — Kap(t) — VCa(q(t)),

(16)

haf

—~
~

~
I



whereq(t) = col(qi(t), - - -, qu(?)), andp(t) = col(py(t), - - - , pu(t)).
The collective version of the adaptive law in (14) for all atgeis given by

A~

04(t) = Tq®L (H)eq(t) — TgAL (H)p(t) — TaLmba(t), (17)

wherel'y = I'® I,, andl’ = I'" = 0 is the diagonal matrix given bly = diag(vy, - - - , 7). Notice
that L,,04(t) = L,,04(t) in (17). The collective error,(t) is defined as

€1 (t) —‘bl(t)él (t)
eq(t) = : - : = —By(t)0(t), (18)
en(t) —®, ()0, (1)
whered,(t) = diag @, (1), - - , @, (t)) € R(Ziez Wil)xmn,

The collective version of the adaptive law in (15) for all atgeis given by

0a(t) = — Pa(t)BF (1)@,(1)0a(t)
— Py(t) AL (£)p(t) — Py(t)LnBa(t), (19)
Py(t) = — Pa(t) D7 (£)Pa(t) Pa(t).
whereP,(t) is defined byP,(t) = diag( Py (¢),- - - , P,(t)) € R™mxmn,

5.4 Convergence analysis

In this section, we present the results for convergenceepti@s of the proposed multi-agent sys-
tems. To this end, we define the global performance costifumof the multi-agent system with

the gradient-based algorithm in (17)

Vatatt) (0). 06(0) = Ula(0) + -2 1 gy + OO0 ooy

whered,(t) = col(6,(t),--- ,0,(t)) is the estimation error vector defined by(t) := 0,(t) — 6.
The global performance cost function for the RLS algoritinn(1i9) is defined by

Vala(t), p(t). Ba(t)) = Ulg(t)) + M 4 <t>P521<t>9d<t

The collective performance cost function will be minimizgdagents. The convergence properties

~—

+ Calq(t)) + (21)

of the multi-agent system is summarized by the followingtieen.



Theorem 1 We consider the distributed control law (h3) based on the gradient-based estimator
in (14) (respectively, the RLS estimator(itb)) along with the global performance cost functign

in (20) (respectively(21)). For any initial stater, = col(qo, po, édo) € D4, whereD, is a compact
set. LetD 4y = {z € D | Vy(z) < a} be a level-set of the collective cost function. L&} be the
set of all points inD 44, where%t(m) = 0. Then every solution starting from 4, approaches the
largest invariant setl/; contained inD., ast — oo.

Moreover, for the adaptive control using the gradient-lzhestimator (respectively, the RLS
estimator), if(L, + K,) and (&7 (t)®,(t) + L.,) (respectively(1®7 (t)®4(t) + L,,)) are positive
definite, then any point* = col(¢*, 0, 0) in M, is a critical point of the cost functiol;(z), which
implies thatz* is either a (local) minimum of;(z) or an inflection point,

8Vd($)
ox

=0,

r=x*

and6,(t) converges td, ast — co.

Proof of Theorem 1 in the case of the gradient-based estimato

Using (16), the time derivative df;(z) in (20) is obtained by
T
VU(q(t)) + VCa(q(t))
p(t)
BT (405 0 (t)

— — ") (Lo + Ka)p(t) + 01 () (AT(#)p(t) + T720(1)).

p(t)

vV, =
‘ SVU((t) — Va(p(t)) — Kaplt) — VCala(t))

(22)
With (17) and (22), we obtain
Va=—p" (t)(La + Ka)p(t) — 07 (£)(PF (1) @a(t) + Lin)ba(t) < 0. (23)

Let2(t) = col(q(t), p(t), 64(t)). From (20), we conclude th&f(z(t)) is radially-unbounded, i.e.,
Va(z(t)) — oo as||z(t)|| — oo. Hence,Dag = {z(t) | Va(x(t)) < a} is bounded and 4, with
%Vd(x) < 0in (23) for allz € D ,q4 is a positively invariant set. By LaSalle’s invariant priple

every pointz(t) in D 44 approached/, included inD.; which is given by

M= {a(t) | Va= —p"(t)(Ls + Ka)p(t) — 67 (1)(®F ()Pa(t) + Lin)0a(t) = 0}, (24)



ast — oo. Letz* be a solution that belongs 10,,. If (L, + K;) > 0 and(®% (t)®4(t) + Ly,) > 0,
Y € Dy, from (24), any point:* in M, is the form ofz*(t) = col(¢*(t), p* = 0,60 = 0).

0:=0=0=0%t) — 0, = VCui(q*) = VCu(q).

From (16), we have

0;=0,p(t)=0=¢"(t) =0=0=-VU(q") - VCu(g").

This implies that:* is a critical point of the cost functioti(x) andd,(¢) converges t@d,. QED.

Proof of Theorem 1 in the case of the RLS estimator.

Using (16), the time derivative df;(z) in (21) is obtained by

Vv, =
’ p(t) —VU(q(t)) — VUa(p(t) — Kap(t) — VCalg(t))

P 0 + HOL

VUg(t) + VCala(t) ] ' p()

= —p"(t)(La + Kq)p(t)
+ 05 (1) (AT(B)p(t) + Py (8)0a(1))

~ -1 ~
e g,
(25)
With (19) and (25), we obtain
V= 47002+ Kaplt) - 350 (3050000 + L ) Bl <0 (29)

The rest of the proof follows as in the case of the gradieminegor. QED.

6 A sampling scheme for helping convergence

To improve the possibility of satisfying the sufficient caiehs of convergence in Theorem 1, we

provide a sampling scheme that will help on makingy(t)®,(¢) positive definite.



Table 1: Parameters in the simulation

Parameters Values
Number of agents 30
Number of basis functions 9
Surveillance regioi) [0, 3]2
(d,dy,dy,r) (0.3,0.39,0.5,0.5)
(K1, k2, ky, ko) (5,1,1,1)
kq 515,
P(0)=T 0.51,,
0;(0) Omx1
o 0.05

In this sampling scheme, at every sampling titna fixed number:() of measurements sam-
pled previously will be augmented to the fresh measurenera#able at time for agenti. The

selection of suchn additional measurements at tihéor agenti is as follows.

dy(t) = arg min flg = . V5 € M. @)

whereM = {1,--- ,m} and¢; is the center location of theth kernel as defined in (8)2;(t) is

defined by
- (Y wenem)o( Y )
kEN. keN;(t™)

wheret~ is the sampling time taken prior to Notice that this selection process in (27) is scalable
and distributed.

Expandedd;(t) due to the the augmented sampled data at times follows.

Dy(t) = o(q(t) - d(@(t) - d(TGm(t)) ]T c RWitmlxm



7 Simulation results

We have applied the proposed distributed adaptive comtfally actuated nonholonomic differen-
tially driven mobile robots introduced in Section 2.1 und#ferent conditions. For the numerical
simulation study, two scalar fields illustrated as color mepFig. 3 were generated by the model
in (6) with nine radial basis functions, i.enn = 9. Agents were launched at a set of randomly
distributed initial poses (positions and angles). Two sétscalar fields and initial pose8 & 2
combinatorial scenarios) were selected and used for alllabons for a fair comparison. Initial
poses of agents and scalar fields have been named 1 and 2 ®claification. A limited trans-
mission radius was chosen to be-= 0.5. The initial value for the parameter vector of each agent
was given as a zero vector, i.é,—(o) = 0,,x1 € R™. Table 1 shows the parameters commonly

used for the numerical evaluation.

7.1 Gradient and RLS estimators

Figs. 3(a), (b), (c), and (d) show trajectories of agenté whe distributed adaptive control using
the gradient-based estimator under initial conditionsd 2@and fields 1 and 2(x 2 scenarios).
The trajectories of robots are marked by snapshots of pdses=a0 sec.,t = 100 sec., and

t = 1000 sec., by white, magenta, and black arrowheads, respggtlewing their positions and
heading angles. The additional sampling positions are eadoly stars«). Each agent runs its own
control based on its own estimation é#fusing its and neighbors’ measurements in a distributed
manner.

To evaluate the convergence rate of the parameter estimfati@ach agent, we compute the
error norm||d;(¢)||, whered, (¢) := 6;(t) — 6 for agent;, and plot||6;(¢)| for all agents € Z with
respect to time as in Figs. 4(a), (b), (c), and (d) for adaptive control with gradient-based under
2 x 2 combinatorial scenarios.

Under the limited communication range, different groupsa@énts are formed to share mea-
surements and interact each other in a distributed fasfiberefore, the final configuration and
convergence rate of each agent will depend on the initiatipas of the multi-agent system and

the uncertain scalar field as shown in Figs. 3 and 4. In paaticcomparing Fig. 3(a) and Fig. 3(c),



it is observed that initial poses of agents play an impomaleton the final configuration of agents.
For example, the initial positions of agents are separatéao groups in Fig. 3(c), therefore these
two groups cannot communicate, resulting that one grougeris converge to a closest local max-
imum. This can be also seen in Figs. 4(a) and (c) in which paranestimates by agents Fig. 4(c)
did not converge to the correct parameters since the conuaiom graph is not connected due
to the limited communication range and the initial posesg#ras. The pairs of behaviors under
initial poses 1 and 2 as shown in Fig. 3(b) and Fig. 3(d), agd 4ib) and Fig. 4(d) clearly show
the similar effect of the initial positions of robots on thedi configuration of agents.

Figs. 5(a), (b), (c), and (d) show trajectories of agentsgidistributed adaptive control based
on the RLS estimator under x 2 combinatorial scenarios. Comparing Figs. 3 and 5, there is
not too much difference between trajectories obtained gitldient-based and RLS estimators.
Figs. 6(a), (b), (c), and (d) show the parameter convergeateeof each agent using distributed
adaptive control based on the RLS estimator urkder2 combinatorial scenarios.

From simulation results in Figs. 3, 4, 5, and 6, we see thattageith distributed adaptive
control and learning algorithms successfully found magaks of the uncertain fields. Note again

that some of agents would converge to the local minima of #id.fi

7.2 Without the proposed sampling scheme

To evaluate the effectiveness of the sampling scheme pedpios(27), we compare distributed
adaptive control based on the gradient-based estimatbrand without the sampling scheme.
Trajectories of agents with the distributed adaptive airiiased on the gradient-based esti-
mator with using sampling scheme proposed in (27) are shovAgss. 3(a), (b), (c), and (d) and
ones without using sampling scheme are shown in Figs. #{g)(d), and (d) oveR x 2 combi-
natorial scenarios. The multi-agent system with the pregaampling scheme outperforms the
multi-agent system without the sampling scheme as can lmectearly by comparing parameter

error convergence rates in Figs. 4 and 8.



7.3 Randomized initial values ford;(0)

Each agent starts by an initial guesség(fo) and recursively updates it by new measurements
collected from itself and its neighbors. Using zero initiahditions may be plausible in detecting
accidental release of toxic chemical plumes, which is nppssed to be found in the surveillance
region in a normal situation. On the other hand, using rangednnitial conditions can be viewed
as exploratory behaviors by dispatching multiple agentamaom directions initially to find peaks
rather than letting them move when they find gradient of thd,fiee., the case with zero initial
conditions.

So far, we have used initial valuég(o) = 0,,x1 € R™ for all simulations under all scenarios
illustrated in Figs. 3, 4, 5,and 7.

In order to show the effect of randomized initial valuesfgdp), we have performed such sim-
ulations with randomized initial values féf(0) and their simulation results are shown in Figs. 9
and 10.

In this case, we have observed that the multi-agent systegessfully found major peaks,
showing similar behaviors and convergence results withe@sto the previous results shown in
Figs. 3 and 4. We also observed that the simulation resuttsnthe randomized initial parameter

values yield more consistent final configurations with respe different initial poses.

8 Conclusions

In this paper, we designed and analyzed a class of multitaystems that locate peaks of static
scalar fields of interest based on adaptive control. Eachtagges driven by swarming and gradient
ascent efforts based on its own recursively estimated fialtbeally collected measurements. The
convergence properties of the proposed multi-agent systeare analyzed. A sampling scheme to
help the convergence was provided. The simulation resaotieiudifferent scenarios matched well
with the predicted behaviors from the convergence analgsiddemonstrated the usefulness of the
proposed coordination and sampling algorithms. The preghosulti-agent systems and coordina-

tion algorithms were developed under a set of assumptioets asi fully actuated nonholonomic



(c) (d)

Figure 3: Trajectories of agents with the distributed asaptontrol based on the gradient-based
estimator. The trajectories of robots are marked by snapstiposes at = 0 sec.,t = 100 sec.,
andt = 1000 sec., by white, magenta, and black arrowheads, respsgctsrewing their positions
and heading angles. The additional sampling positions arked by stars«). (a) initial pose 1
and field 1, (b) initial pose 1 and field 2, (c) initial pose 2 dieid 1, (d) initial pose 2 and field
2. Horizontal and vertical and axes are x and y coordinatgsecively and the background color

plot shows the scalar field.
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Figure 4: The norm of parameter estimation error, {9, (¢)||} by each agent with the distributed

adaptive control based on the gradient-based estimatatims. (a) initial pose 1 and field 1, (b)

initial pose 1 and field 2, (c) initial pose 2 and field 1, (d}iedipose 2 and field 2.
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Figure 5: Trajectories of agents with the distributed aieptontrol based on the RLS estimator.
(a) initial pose 1 and field 1, (b) initial pose 1 and field 2, ifg}ial pose 2 and field 1, (d) initial

pose 2 and field 2. The same notations are used as in Fig. 3(a).
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Figure 6: The norm of parameter estimation error, {9, (¢)||} by each agent with the distributed
adaptive control based on the RLS estimator v.s. time. ({@lipose 1 and field 1, (b) initial pose
1 and field 2, (c) initial pose 2 and field 1, (d) initial pose 2 dield 2.
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Figure 7: Trajectories of agents with the distributed asaptontrol based on the gradient-based
estimator without using sampling scheme proposed in (27 )n{tial pose 1 and field 1, (b) initial
pose 1 and field 2, (c) initial pose 2 and field 1, (d) initial @@sand field 2. The same notations

are used as in Fig. 3(a).



error norm

05F

L L L L
0 100 200 300 400

(@

error norm

05F

I I I I
0 100 200 300 400

(©

error norm

error norm

. I | 1 | . I | 1
0 100 200 300 400 500 600 700 800 900 1000
time

(b)

05F

! | I I I ! | I I
0 100 200 300 400 500 600 700 800 900 1000
time

(d)

Figure 8: The norm of parameter estimation error, {§9;(¢)||} by each agent with the distributed

adaptive control based on the gradient-based estimatboutiising sampling scheme v.s. time.

(a) initial pose 1 and field 1, (b) initial pose 1 and field 2, ifg}ial pose 2 and field 1, (d) initial

pose 2 and field 2.
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Figure 9: Trajectories of agents with the distributed asaptontrol based on the gradient-based
estimator with random initial values fcﬁg(o). (a) initial pose 1 and field 1, (b) initial pose 1 and
field 2, (c) initial pose 2 and field 1, (d) initial pose 2 anddi@. The same notations are used as

in Fig. 3(a).
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Figure 10: The norm of parameter estimation error, {&6,(t)||} by each agent with the dis-
tributed adaptive control based on the gradient-baseahasit and random initial values féy(0)
v.s. time. (@) initial pose 1 and field 1, (b) initial pose 1 dieid 2, (c) initial pose 2 and field 1,

(d) initial pose 2 and field 2.



differentially driven mobile robots, no sensor noise andnapte communication model (r-disk).
Therefore, the future work is to extend the proposed appraaenore realistic conditions and
develop the stochastic version of this problem, taking adcount the measurement sensor noise.
Another future direction is to apply the proposed coordoraalgorithms to a group of robotic

boats, which are being developed by the Professor Choiigpgab Michigan State University.
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