
EFFICIENT SPATIAL PREDICTION USING GAUSSIAN MARKOV RANDOM FIELDS
UNDER UNCERTAIN LOCALIZATION

Mahdi Jadaliha Yunfei Xu
Department of Mechanical Engineering

Michigan State University
East Lansing, MI 48824, USA

E-mails: {jadaliha, xuyunfei}@msu.edu

Jongeun Choi∗
Department of Mechanical Engineering

Department of Electrical and Computer Engineering
Michigan State University

East Lansing, MI 48824, USA
E-mail: jchoi@egr.msu.edu

ABSTRACT
In this paper, we develop efficient spatial prediction algo-

rithms using Gaussian Markov random fields (GMRFs) under
uncertain localization and sequential observations. We first re-
view a GMRF as a discretized Gaussian process (GP) on a lattice,
and justify the usage of maximum a posteriori (MAP) estimates
of noisy sampling positions in making inferences. We show that
the proposed approximation can be viewed as a discrete version
of Laplace’s approximation for GP regression under localization
uncertainty. We then formulate our problem of computing pre-
diction and propose an approximate Bayesian solution, taking
into account observations, measurement noise, uncertain hyper-
parameters, and uncertain localization in a fully Bayesian point
of view. In particular, we present an efficient scalable approxi-
mation using MAP estimates of noisy sampling positions with a
controllable tradeoff between approximation error and complex-
ity. The effectiveness of the proposed algorithms is illustrated
using simulated and real-world data.

1 Introduction
Lately, there has been an increasing exploitation of mobile

robotic sensors in environmental monitoring [1–5]. Gaussian
processes (GPs) (or Gaussian random fields) defined by mean
and covariance functions over a continuum space [6,7] have been
frequently used for mobile sensor networks to statistically model
physical phenomena such as harmful algal blooms, pH, and tem-
perature, e.g., [8–10].

A set of hyperparameters in the covariance function can be
estimated by a point estimator such as a maximum likelihood

∗Address all correspondence to this author.

(ML) estimator or a maximum a posteriori (MAP) estimator and
then it can be used for the prediction [11]. However, the point es-
timate itself needs to be identified using certain amount of mea-
surements and it does not take into account the uncertainty in the
estimated hyperparameters in prediction.

The advantage of a fully Bayesian approach is the capabil-
ity of incorporating various uncertainties in the model parame-
ters and measurement processes in the prediction [12]. However,
the solution often requires Markov Chain Monte Carlo (MCMC)
methods, which greatly increases the computational complex-
ity. In [5], a sequential Bayesian prediction algorithm and its
distributed version (without resorting to MCMC methods) have
been developed to deal with uncertain bandwidths by using a
compactly supported covariance function and selecting a subset
of collected measurements.

Recently, there have been efforts to fit a computationally
efficient Gaussian Markov random field (GMRF) on a discrete
lattice to a GP on a continuum space [13–16]. It has been
demonstrated that GMRFs with small neighborhood can approx-
imate Gaussian fields surprisingly well [13]. This approximated
GMRF and its regression are very attractive for the resource-
constrained mobile sensor networks due to its computational ef-
ficiency and scalability [17] as compared to the standard GP and
its regression. In [18] the authors developed a new class of GPs
that builds on a GMRF and derived the predictive statistics for
known hyperparameters. On the other hand, [16] developed se-
quential fully Bayesian prediction algorithms for a GMRF with
unknown hyperparameters.

In practice, resource-constrained mobile sensor networks
are subject to localization uncertainty. In [19], GP regression un-
der known hyperparameters and uncertain localization has been



formulated. This has been extended in [20], where sequential
fully Bayesian prediction algorithms for a GMRF that can take
into account uncertain localization have been developed. How-
ever, the resulting computation time for the proposed approach
in [20] is still prohibitive for real-time implementation of the
robotic sensors. Hence, the objective of this paper is to design
efficient prediction algorithms in order to improve the complex-
ity of the scheme developed in [20].

The contributions of the paper are as follows. We first show
that an approximated predictive distribution based on MAP es-
timates of noisy sampling positions can be viewed as a discrete
version of Laplace’s approximation for GP regression under lo-
calization uncertainty in a continuous space (Section 2). We in-
troduce the practical models for the mobile sensor network and
the spatio-temporal random field that will be used for our main
problems (Section 3). We then formulate our problem of com-
puting prediction and propose an approximate Bayesian solution,
taking into account observations, measurement noise, uncertain
hyperparameters, and uncertain localization in a fully Bayesian
point of view (Section 4). In particular, the proposed solution is
scalable and can be efficiently computed using MAP estimates of
sampling positions. The effectiveness of the proposed algorithms
is illustrated using simulated and real-world data (Section 5).

Standard notation will be used throughout the paper. Let R
and Z>0 denote, respectively, the sets of real and positive integer
numbers. The operator of expectation is denoted by E. A random
vector x, which has a multivariate normal distribution of mean
vector µ and covariance matrix Σ, is denoted by x ∼ N (µ,Σ).
For given G = {c,d} and H = {1,2}, the multiplication between
two sets is defined as H×G= {(1,c),(1,d),(2,c),(2,d)}. Other
notation will be explained in due course.

2 Gaussian Process and Gaussian Markov Random
fields
In this section, we first review a GMRF as a discretized GP

on a lattice, and justify the usage of MAP estimates of noisy
sampling positions in computing the predictive distribution.

Consider a zero-mean GP: z(q) ∼ GP (0,Σ(q,q′)), where
Σ(·, ·) is the covariance function defined in a continuum space Sc.
We discretize the compact domain Sc := [0 xmax]× [0 ymax] into n
spatial sites S := {s[1], · · · ,s[n]} ⊂ Rd , where n = hxmax×hymax.
h will be chosen such that n ∈ Z>0. Note that n→ ∞ as h→ ∞.
The collection of realized values of the random field in S is de-
noted by z := (z[1], · · · ,z[n])T ∈ Rn, where z[i] := z(s[i]).

The prior distribution of z is given by z ∼ N (0,Σ0), and so
we have

π(z) ∝ exp
(
−1

2
zT

Σ
−1
0 z
)
,

where Σ0 ∈Rn×n is the covariance matrix. The i, j-th element of
Σ0 is defined as Σ

[i j]
0 = Cov(z[i],z[ j]) = Σ(z[i],z[ j]). The prior dis-

tribution of z can be written by a precision matrix Q0 = Σ
−1
0 , i.e.,

z ∼ N (0,Q−1
0 ). This can be viewed as a discretized version of

the GP (or a GMRF) with a precision matrix Q0 on S . Note that
Q0 of this GMRF is not sparse. However, a sparse version of Q0,
i.e., Q̂0 with local neighborhood that can represent the original
GP can be found, for example, making Q̂0 close to Q0 in some
norm [13–15]. This approximate GMRF will be computationally
efficient due to the sparsity of Q̂0. For our main problems, we
will use a GMRF with a sparse precision matrix that represents a
GP precisely (see Section 3.2).

Let us assume that we take N noisy measurements y =
(y[1], · · · ,y[N])T ∈ RN from corresponding sampling locations
qc = (q[1]Tc , · · · ,q[N]T

c )T ∈ S N
c . Here, the measurement model is

given by

y[i] := y(q[i]c ) = z(q[i]c )+ ε
[i],∀i = 1, · · · ,N

where ε[i]
i.i.d.∼ N (0,σ2

ε) is the measurement noise and is assumed
to be independent and identically distributed (i.i.d.).

Using GP regression, the posterior distribution for z ∈ Rn is
given by

z|qc,y∼N (µ,Σ). (1)

The predictive mean µ ∈Rn and covariance matrix Σ ∈Rn×n can
by obtained by

µ = KTC−1y, Σ = Σ0−KTC−1K, (2)

where the covariance matrices are defined as K := Cov(y,z) ∈
RN×n, C := Cov(y,y) ∈ RN×N , and Σ0 := Cov(z,z) ∈ Rn×n.

Now, consider localization uncertainty. The prior distribu-
tion for sampling location q[i]c is given by π(q[i]c |q̃[i]c ), possibly
with a compact support in Sc. Then the predictive distribution
of z given the measured locations q̃c = (q̃[1]Tc , · · · , q̃[N]T

c )T is thus
given by

π(z|q̃c,y) =
∫

q∈Sc

π(z|q,y)π(q|q̃c,y)dq, (3)

where π(z|q,y) can be obtained in (1). However, the predic-
tive distribution in (3) does not have a closed-form solution and
needs to be computed either by MCMC methods or approxima-
tion techniques [19].

The following MAP estimate of qc, i.e.,

q̂ = argmax
q∈Sc

π(q|q̃c,y), (4)

can be used to approximate the predictive distribution as
π(z|q̂,y). In our previous work in [19], we have the following
result.



Theorem 2.1. (see Theorem 4 in [19]) Let q̂ be an asymptotic
mode of order O(g−1) for 1

g log(π(y|q)π(q|q̃c)). This mode is
the MAP estimator given in (4). Consider the following Laplace
approximations by plugging q̂ for qc into (2):

µ̂ = K(q̂)TC(q̂)−1y, Σ̂ = Σ0−K(q̂)TC(q̂)−1K(q̂).

We then have the following order of errors.

µ̂[i] = µ[i]+O(g−1), Σ̂
[ii] = Σ

[ii]+O(g−1).

Now we consider the discretized version of the GP, i.e.,
(GMRF) with a precision matrix Q0 on S . Since the sampling
points of GP regression are not necessarily on S , we use the near-
est grid point of a given sampling point qc in Sc

q[i] = argmin
q∈S
‖q[i]c −q‖.

The sampling positions for the GMRF are then exactly on the
lattice, i.e., q[i] ∈ S . The posterior distribution of z ∈ Rn on S
given by measurements in y ∈RN and sampling positions in q =
(q[1]T , · · · ,q[N]T )T ∈ S N , is then obtained by

z|q,y∼N (Q−1b,Q−1), (5)

where Q = Q0 +HP−1HT , b = HP−1y, with P = σ2
εI ∈ RN×N

and H ∈ Rn×N defined as

H [i j] =

{
1, if s[i] = q[ j],
0, otherwise.

We consider again localization uncertainty for this GMRF.
Let the measured noisy location q̃[i] be the nearest grid point of
the measured noisy sampling point q̃[i]c of the GP. Now we obtain
a set of discretized probabilities in S induced by the continuous
prior distribution defined in Sc. The discrete prior distribution for
the sampling location q[i] is given by

π(q[i] = s[ j]|q̃[i]) =
∫

s⊂V j

π(s|q̃[i])ds,

where π(s|q̃[i]) is the continuous prior as in GP regression and V j

is the Voronoi cell of the j-th grid point s[ j] given by

V j := {s ∈ S |‖s− s[ j]‖ ≤ ‖s− s[i]‖,∀i 6= j}.

The predictive distribution of z given y and q̃ is thus given by

π(z|q̃,y) = ∑
q∈S

π(z|q,y)π(q|q̃,y), (6)

(a) h1

(b) h2

Figure 1. Example of localization uncertainty for q[i]. The measured
sampling location q̃[i] is indicated in a small red circle. The small red
circle along with the blue squares and the blue star show the possible
locations of the true sampling point q[i] according to the prior distribution
π(q[i]|q̃[i]) with a compact support as shown in the big red circle. The
blue star indicates the location q̂[i] which has the maximum posterior dis-
tribution of π(q[i]|q̃,y). The predictive distribution of the field z is then
approximated by π(z|q̂,y).

where π(z|q,y) can be obtained by (5) and the summation is over
all possible locations in S . However, the summation in (6) re-
quires a significant computation time. Hence, we look for a sim-
ilar approximation to the one in Theorem 2.1.

Let q̂ be the MAP estimator that maximizes the posterior
distribution π(q|q̃,y). As in the continuous case, we can approx-
imate the predictive distribution with π(z|q̂,y) to reduce the com-
putational complexity by removing the summation in (6). Fig. 1
shows two examples of using this approximation approach with
h1 > h2. When h→ ∞, q̃→ q̃c, and the predictive distribution
approximated by π(z|q̂,y) converges to the one using Laplace’s
method as shown in Theorem 2.1. This shows that an approxi-
mation based on MAP estimates of the sampling positions can be
viewed as a discrete version of Laplace’s approximation. Lever-
aging this idea, we will develop efficient sequential spatial pre-
diction algorithms using a GMRF under uncertain localization in
the rest of this paper.



3 Practical Models for Main Problems
In this section, we introduce specific models for the mobile

sensor network and the spatio-temporal random field.

3.1 Mobile Sensor Networks
Suppose that the sampling time t ∈Z>0 is discrete. Let zt :=

(zt
[1], · · · ,zt

[n])T ∈ Rn be the corresponding values of the scalar
field at n special sites and time t.

Consider N spatially distributed mobile sensing agents in-
dexed by j ∈ J := {1, · · · ,N} sampling at time t ∈ Z>0. At time
t, agent j takes a noise corrupted measurement at it’s current lo-
cation qt

[ j] = s[i] ∈ S , i.e.,

y[ j]t = z[i]t + ε
[ j]
t , ε

[ j]
t

i.i.d.∼ N (0,σ2
ε), (7)

where the measurement errors {ε[ j]t } are assumed to be i.i.d. The
measurement noise level σ2

ε > 0 is assumed to be known. For
notational simplicity, we denote all agents’ locations at time t

by qt =
(

qt
[1]T , · · · ,qt

[N]T
)T
∈ S N and the observations made by

all agents at time t by yt =
(

y[1]t , · · · ,y[N]
t

)T
∈ RN . Furthermore,

we denote the collection of agents’ locations and the collective
observations from time 1 to t by q1:t =

(
q1

T , · · · ,qt
T
)T ∈ S Nt and

y1:t = (y1, · · · ,yt)
T ∈ RNt , respectively. In addition, let us define

zt = (zt
[1], · · · ,zt

[n])T ∈ Rn on S , and εt = (ε
[1]
t , · · · ,ε[N]

t )T ∈ RN .
We then have the following collective notation.

yt = HT
t zt + εt , (8)

where Hτ ∈ Rn×N is defined by

H [i j]
τ =

{
1, if s[i] = q[ j]τ ,
0, otherwise.

3.2 Spatio-Temporal Field Model
The value of the scalar field at space s[i] and time t is denoted

by z[i]t and is modeled by a sum of a time-varying mean function
and a GMRF

zt
[i] = λ

[i]
t +η

[i]
t , ∀i ∈ {1, · · · ,n}, t ∈ Z>0. (9)

Here the mean function λ
[i]
t : S ×Z>0→ R is defined as

λ
[i]
t = f (s[i])T

βt ,

where f (s[i]) = ( f1(s[i]), · · · , fp(s[i]))T ∈ Rp is a known regres-
sion function and βt = (β

[1]
t , · · · ,β[p]

t )T ∈ Rp is an unknown vec-
tor of regression coefficients. The time evolution of βt ∈ Rp is

modeled by a linear time-invariant system given by

βt+1 = Atβt +Btωt , (10)

where ωt ∼ N (0,W ), β0 ∼ N
(
µβ0 ,Σβ0

)
, and At and Bt are

known system parameters.
In addition, we consider a zero-mean GMRF [21] ηt =(

η
[1]
t , · · · ,η[n]

t

)T
∈ Rn whose covariance matrix is given by

E(ηtη
T
k |θ) = Q−1

θ
δ(t− k), (11)

where δ(·) is the Kronecker delta defined by

δ(k) =
{

1, k = 0,
0, otherwise,

and the inverse covariance matrix (or precision matrix) Qθ ∈
Rn×n is a function of the hyperparameter vector θ.

There are different parameterizations of the GMRF (i.e., the
precision matrix Qθ) [21]. Our Bayesian approach does not de-
pend on the choice of the parameterization for the precision ma-
trix. However, for a concrete and useful exposition, we describe
a specific parameterization used in this paper. The precision ma-
trix is parameterized with the full conditionals as follows.

Let η be a GMRF on a regular two-dimensional lattice. The
associated Gaussian full conditional mean is

E(η[i]
t |η

[−i]
t ,θ) =− 1

Q[ii]
θ

n

∑
j=1

Q[i j]
θ

η
[ j]
t , (12)

where Q[i j]
θ

is the i-th row and j-th column element of κ−1Qθ.

Here, η
[−i]
t is the collection of ηt values everywhere except s[i].

The hyperparameter vector is defined as θ = (κ,α)T ∈ R2
>0,

where α = a− 4. Fig. 2 shows the value of Q[i j]
θ

for one point

along with its neighbors, graphically. The value of Q[ii]
θ

is 4+a2

as denoted at the center node of the graph in Fig. 2. That of Q[i j]
θ

is −2a if j is one of the four closest neighbors of i in the vector
1-norm sense as illustrated by the graph in Fig. 2. Thus, the value
of Q[i j]

θ
is zero if j is not one of the twelve closest neighbors of i

(or twelve neighbors whose 1-norm distance to the i-th location
is less than or equal to 2). The equation in (12) states that the
conditional expectation of η

[i]
t given the value of ηt everywhere

else (i.e., η
[−i]
t ) can be determined just by knowing the value of ηt

on the twelve closest neighbors (see more details in [22]). The
resulting GMRF accurately represents a Gaussian random field
with the Matérn covariance function as shown in [22]

G(r) = σ
2
f
21−ρ

Γ(ρ)

(√
2ρr
`

)ρ

Kρ

(√
2ρr
`

)
, (13)
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Figure 2. Elements of the precision matrix Q related to a given location.

 

 

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

(a)

 

 

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

(b)

 

 

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c)

 

 

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(d)

Figure 3. GP vs. GMRF. The left column shows the Gaussian processes
with the Matérn covariance function. The right column shows the approxi-
mated Gaussian processes by the Gaussian Markov random field. In first,
and second rows, the continuous fields are discretized by 50× 50, and
200×200 grid points, respectively.

where Kρ(·) is a modified Bessel function [7], with order ρ = 1,
a bandwidth ` = 1/h

√
α

2 , and vertical scale σ2
f = 1/4πακ. The

capability of this GMRF model with a sparse precision matrix to
represent a discretized Gaussian process with the same Matérn
covariance function is illustrated in Fig. 3.

The hyperparameter α > 0 guarantees the positive definite-
ness of the precision matrix Qθ. In the case where α = 0, the
resulting GMRF is a second-order polynomial intrinsic GMRF
[21, 23].

From the presented model in (9), (10), and (11), the distri-
bution of zt given βt and θ is Gaussian, i.e.,

zt |βt ,θ∼N
(
Fsβt ,Q−1

θ

)
, (14)

where Fs := ( f (s[1]), · · · , f (s[n]))T ∈ Rn×p.
In other words, zt |βt ,θ ∼ GP (Fsβt ,Σθ) ∈ Rn is a non-zero

mean Gaussian process. Here, the covariance matrix Σθ is de-
fined as inverse of the precision matrix (i.e., Σθ = Q−1

θ
). Note

that the precision matrix is a positive definite matrix and invert-
ible, and Σ

[i j]
θ

= Cov(z[i]t ,z[ j]t ), where Σ
[i j]
θ

is the i, j-th element of
the covariance matrix.

For simplicity, let us define Bt = {βt ,qt ,yt ,θ}. Using Gaus-
sian process regression, the posterior distribution for zt |Bt ∈ Rn

is given by

µzt |Bt = HT
t Fsβt +ΣθHt

(
HT

t ΣθHt +σ
2
εI
)−1 (

yt −HT
t Fsβt

)
,

Σzt |Bt = Σθ−ΣθHt
(
HT

t ΣθHt +σ
2
εI
)−1

HT
t Σθ.

(15)

The basic idea behind the model introduced in (9), (10), and
(11) stems from the space-time Kalman filter model proposed in
[24]. The advantage of this spatio-temporal model with known
hyperparameters is to make inferences in a recursive manner as
the number of observations increases. The zero-mean Gaussian
process represents a spatial structure by assuming that the dif-
ference between the parametric mean function and the dynami-
cal environmental process is governed by a relatively large time
scale. This formulation in turn makes the optimal prediction re-
cursive in time.

In this paper, however, uncertainties in the precision matrix
and sampling positions are considered in a fully Bayesian man-
ner. In addition, in contrast to [4, 24], the GMRF with a sparse
precision matrix is used to increase the computational efficiency.

4 Bayesian Predictive Inference
In this section, we present efficient and scalable prediction

algorithms for cases with perfect and uncertain localization.

4.1 Uncertain hyperparameters and exact localization
In this section, we brifly state the result of [20] to make pre-

dictive inferences of the spatio-temporal random field zt ∈Rn for
the case with uncertain hyperparameters and the exact localiza-
tion. To this end, we use the following assumptions A.1-A.5.

A.1 The spatio-temporal random field is generated by (9), (10),
and (11).

A.2 The precision matrix Qθ is a given function of an uncertain
hyperparameter vector θ.

A.3 The noisy measurements {yt}, as in (8), are continuously
collected by robotic sensors in time t.

A.4 The sample positions {qt} are measured precisely by
robotic sensors in time t.

A.5 The prior distribution of the hyperparameter vector θ is dis-
crete with a support Θ = {θ(1), · · · ,θ(L)}.



For notational simplicity, we denote the full latent field
of dimension n + p by xt = (zt

T ,βT
t )

T . Let’s define Dk:r :=
{Pk−1,qk:r,yk:r}, where Pk = {µxk|D1:k ,Σxk|D1:k}∪{π(θ|D1:k)|θ∈
Θ}, and P0 is assumed to be known.

We formulate the first problem as follows.

Problem 4.1. Consider the assumptions A.1-A.5. Our problem
is to find the predictive distribution, mean, and variance of xt
conditional on Dt−m+1:t .

In what follows, we summarize the intermediate steps to ob-
tain the solution to Problem 4.1. Under assumptions A.1 and
A.2, the predictive distribution of xt conditional on the hyperpa-
rameter vector θ and the measurements Dt−m+1:t−1 is Gaussian
with the following mean and precision matrix

µxt |θ,Dt−m+1:t−1 =

(
Fsµβt |θ,Dt−m+1:t−1
µβt |θ,Dt−m+1:t−1

)
,

Qxt |θ,Dt−m+1:t−1 =

(
Qθ −QθFs

−FT
s Qθ FT

s QθFs +Σ
−1
βt |θ,Dt−m+1:t−1

)
,

(16)

where µβt |θ,Dt−m+1:t−1 denotes the expectation of βt conditional on
θ and Dt−m+1:t−1 obtained by

µβt |θ,Dt−m+1:t−1 = Atµβt−1|θ,Dt−m+1:t−1

and the associated estimation error covariance matrix can be ob-
tained by

Σβt |θ,Dt−m+1:t−1 = AtΣβt−1|θ,Dt−m+1:t−1AT
t +BtWBT

t .

For a given hyperparameter vector θ, (16) provides the optimal
prediction of the spatio-temporal field in time t using data up to
time t−1.

Under assumptions A.3 and A.4, the posterior distribution
of the hyperparameter vector θ can be obtained recursively via

π(θ|Dt−m+1:t) ∝ π(yt |θ,Dt−m+1:t−1,qt)π(θ|Dt−m+1:t−1), (17)

where the distribution of yt given {θ,Dt−m+1:t−1,qt} is Gaussian
with the following mean and variance

µyt |θ,Dt−m+1:t−1,qt = Γ
T
qt µxt |θ,Dt−m+1:t−1 ,

Σyt |θ,Dt−m+1:t−1,qt = Γ
T
qt Σxt |θ,Dt−m+1:t−1Γqt +σ

2
εI,

(18)

here ΓT
qt = [HT

t 0] ∈ RN×(n+p).

Algorithm 1 Sequential Bayesian predictive inference.

Initialization:
1: initialize Fs
2: for θ ∈Θ, initialize Qθ, and compute Q−1

θ

At time t ∈ Z>0, do:
1: obtain new observations yt collected at current locations qt
2: find the map Γqt from qt to spacial sites S , and compute radial

basis values Fqt in qt .
3: for θ ∈Θ do
4: predict µxt |θ,Dt−m+1:t−1

and Qxt |θ,Dt−m+1:t−1
using measurements

up to time t−1, given by (16).
5: compute µxt |θ,Dt−m+1:t

and Qxt |θ,Dt−m+1:t
given by (20).

6: compute µyt |θ,Dt−m+1:t−1,qt
and Σyt |θ,Dt−m+1:t−1,qt

given by (18).
7: calculate π(θ|Dt−m+1:t) given by (17).
8: end for
9: compute the predictive mean and variance using (22).

Under assumptions A.1-A.4, the full conditional distribution
of xt for a given hyperparameter vector and data up to time t is
also Gaussian, i.e.,

xt |θ,Dt−m+1:t ∼N (µxt |θ,Dt−m+1:t ,Q
−1
xt |θ,Dt−m+1:t

), (19)

where

Qxt |θ,Dt−m+1:t =Qxt |θ,Dt−m+1:t−1 +σ
−2
ε Γqt Γ

T
qt ,

µxt |θ,Dt−m+1:t =µxt |θ,Dt−m+1:t−1 +σ
−2
ε Q−1

xt |θ,Dt−m+1:t
Γqt

(yt −Γ
T
qt µxt |θ,Dt−m+1:t−1).

(20)

Under assumption A.5, the predictive distribution of
xt |Dt−m+1:t is given by

π(xt |Dt−m+1:t) = ∑
θ∈Θ

π(xt |θ,Dt−m+1:t)π(θ|Dt−m+1:t), (21)

where π(θ|Dt−m+1:t) and π(xt |θ,Dt−m+1:t) are given by (17) and
(19), respectively. The predictive mean and variance are as fol-
lows.

µxt |Dt−m+1:t = ∑
θ∈Θ

µxt |θ,Dt−m+1:t π(θ|Dt−m+1:t),

Σxt |Dt−m+1:t =

∑
θ∈Θ

[
Σxt |θ,Dt−m+1:t +(µxt |θ,Dt−m+1:t −µxt |Dt−m+1:t )

(µxt |θ,Dt−m+1:t −µxt |Dt−m+1:t )
T ]

π(θ|Dt−m+1:t).

(22)

The proposed solution to the formulated problem is summa-
rized by Algorithm 1.



4.2 Uncertain hyperparameters and localization
In the previous section, we assumed that the localization

data q1:t is exactly known. However, in practice positions of sen-
sor networks cannot be measured without noise. Instead, for ex-
ample, there could be several probable possibilities inferred from
the measured position. In [20], we provided the exact solution
and a successive approximation to this problem. In this section,
a new approximation will be proposed to reduce the computation
complexity significantly.

In order to take into account the uncertainty in the sampling
positions, we replace assumption A.4 with the following assump-
tion A.6.

A.6 The prior distribution π(qt) is discrete with a support Ω(t)=
{q(k)t |k ∈ I (t)}, which is given at time t along with the cor-
responding measurement yt . Here, I (t) = {1, · · · ,γ(t)} de-
notes the index in the support and γ(t) is the number of the
probable possibilities for qt .

An straightforward consequence of the assumption A.6 is
that the prior distribution π(qk:r) is discrete with a support Ω(k :
r) := ∏

r
g=k Ω(g). In addition, I (k : r) := ∏

r
g=k I (g) denotes the

index in the support Ω(k : r), and γ(k : r) := ∏
r
g=k γ(g) is the

number of the probable possibilities for qk:r. Now we state the
problem as follows.

Problem 4.2. Consider assumptions A.1, A.2, A.3, A.5, and
A.6. Our problem is to find the predictive distribution, mean and
variance of xt conditional on the prior P0 and the measurements
y1:t .

For the sake of conciseness, let us define Rr:k := {Pr−1,yr:k}.
We then have that Rr:k ⊂ Dr:k, where we recall that Dr:k :=
{Pr−1,qr:k,yr:k}.

Here, we proposed an approximation, with a controllable
tradeoff between approximation error and complexity. The idea
is based on the fact that the estimation of xt is more susceptible
to the uncertainties in recently sampled positions as compared to
old ones. In addition, to avoid the summation over all probable
sampling positions we compute the MAP estimates of sampling
positions and we plug them into Algorithm 1.

Using prior distribution of xt−m and measured data yt−m+1:t ,
where m ∈ Z>0, the posterior distribution of qt−m+1:t can be ob-
tained recursively via

π

(
q( j)

t−m+1:t−1,q
(k)
t |Rt−m+1:t

)
∝

π(q( j)
t−m+1:t−1|Rt−m+1:t−1)π(yt |D

( j)
t−m+1:t−1,q

(k)
t )π(q(k)t ).

(23)

where j ∈ I (t−m+1 : t−1), and k ∈ I (t).
We consider the following conditions.

C.1 For 1� m≤ t, we have that

π(xt |R1:t)≈ π(xt |Rt−m+1:t) (24)

Algorithm 2 Sequential Bayesian predictive inference approxi-
mation with uncertain localization.

At time t ∈ Z>0, do:
1: obtain new observations yt along with the probabilities

for locations π(qt)

2: for q(h)t ∈Ω(t−m+1 : t) do
3: compute π

(
q(h)t−m+1:t |Rt−m+1:t

)
using (23).

4: end for
5: find MAP estimation q̂t−m+1:t using (27)
6: use following approximation to update estimations

µxt |R1:t ≈ µxt |D̂t−m+1:t
,Σxt |R1:t ≈ Σxt |D̂t−m+1:t

,

Pt ≈ {µxt |D̂t−m+1:t
,Σxt |D̂t−m+1:t

}∪{π(θ|D̂t−m+1:t)|θ ∈Θ}

C.2 For 1� m≤ t, Pt can be approximated by

Pt ≈{µxt |Rt−m+1:t ,Σxt |Rt−m+1:t}∪{π(θ|Rt−m+1:t)|θ ∈Θ}.
(25)

Under conditions C.1 and C.2, [20] proposed the following
approximations (see Theorem 3.13 in [20]).

µxt |R1:t ≈ µxt |Rt−m+1:t , Σxt |R1:t ≈ Σxt |Rt−m+1:t . (26)

However, the proposed approximation in (26) has constant
complexity in time, still the number of possibilities for sampling
positions can increase the computational time considerably. To
minimize the computational complexity, one may prefer a sim-
pler approximation. As we discussed in Section 2, we propose
efficient approximation by using MAP estimation of sampling
positions. The MAP estimator is given by

q̂t−m+1:t = arg max
q(h)t−m+1:t∈Ωt−m+1:t

π

(
q(h)t−m:t |Rt−m+1:t

)
, (27)

where the distribution of q(h)t−m+1:t |Rt−m+1:t is computed by (23),
recursively. Let us define D̂t−m+1:t = {q̂t−m+1:t}∪Rt−m+1:t . We
propose the following approximations

µxt |R1:t ≈ µxt |D̂t−m+1:t
, Σxt |R1:t ≈ Σxt |D̂t−m+1:t

. (28)

4.3 Complexity of Algorithms
In this section, we discuss complexity aspects of the pro-

posed algorithms. The complexity of Algorithm 1 is studied in
[20]. The complexity of the approximation proposed in [20] is



O(γ(t−m+1 : t)) times the complexity of Algorithm 1 for m
time steps. In contrast to the one proposed in [20], the com-
plexity of the new scheme, summarized by Algorithm 2, is the
complexity of Algorithm 1 for m time steps plus the complexity
of finding q̂, which significantly improves in computation time.

For a fixed number of radial basis functions (i.e., p) and a
fixed number of the special sites (i.e., n), the computational com-
plexity of finding q̂ in each time step is O(mLN2), where L is the
number of possible hyperparameter vectors and N is the number
of agents. Note that the number of radial basis functions affect
the complexity of finding q̂ as well. For a fixed set of n, L and N,
the complexity of finding q̂ with respect to p is O

(
p3
)
.

5 Simulation and Experimental Results
In this section, we demonstrate the effectiveness of the pro-

posed sequential Bayesian inference algorithms using simula-
tions and experiments. We apply the proposed prediction algo-
rithms to real experimental data. The light intensity fields can be
easily realized for experimental setups [25,26]. Fig. 4-(a) shows
our experimental setup in which a light intensity field was gener-
ated by inserting opaque materials under an acrylic plate. A CCD
camera on the top of the plate captured the true light field from
which noisy measurements are sampled at random sampling po-
sitions by simulated robotic sensors. The true field is used for
evaluating the performance of the proposed schemes. The true
scalar field, shown in Fig. 4-(b), was realized by inserting crum-
pled news papers between the plate and light sources. The ob-
jective is to predict the light intensity field, using the scalar field
model proposed in Section 3.2.

In this study, we use the spatio-temporal field introduced
in Section 3.2. The spacial sites in S consist of 51× 51 grid
points, i.e., n = 2601, uniformly distributed over the surveil-
lance region [−25,25]× [−25,25]. The time-varying mean func-
tion µt consists of ten radial basis functions (i.e., p = 10) given

by f j(s[i]) = exp
(
− ‖s

[i]−ξ j‖2

2σ2
j

)
, j ∈ {1, · · · , p}, where σ j is the

bandwidth and ξ j is the center location of the j-th radial basis
function. The first radial basis function has an infinity band-
width (i.e., σ1 = ∞) to represent the average of the field, and
the others have a bandwidth equal to σ j = 15. The centers of
radial basis functions are {(0,0)}∪{−15,0,15}×{−15,0,15}.
The prior distribution of β0 is chosen to be β0 ∼ N (0,5I). The
time evolution of βt is modeled by (10), where the state ma-
trix At and the input matrix Bt are given by 0.95I10×10 and
0.5I10×10, respectively. The input disturbance variance and the
measurement noise variance are known to be W = I10×10 and
σ2

ε = 0.1, respectively. Regarding the GRMF part in the model,
the prior distribution of the hyperparameter vector θ is cho-
sen to be discrete with a support Θ = { 50

9 , 50
3 ,50,150,450}×

{ 0.005
9 , 0.005

3 ,0.005,0.015,0.045} with the associated uniform
probabilities.

To evaluate the effectiveness of the proposed approxima-
tion in dealing with uncertain sampling positions, thirty (virtual)
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Figure 4. (a) The experimental setup to generate the light intensity field
using three light bulbs. (b) The true light intensity field.

robotic sensors (i.e, N = 30) take measurements at time t = 1,
where all agents know their sampling positions exactly except six
of them (20% uncertain sampling positions). In Figs. 5-(g), (h),
and (i), true, noisy, and probable sampling positions are shown
in circles, stars, and corners of squares, respectively.

The prediction results are summarized for three methods of
prediction as follows.

Case 1: Figs. 5-(a), (d), and (g) show the prediction, predic-
tion error variance, and squared (empirical) error fields, us-
ing Algorithm 1 with exact sampling positions. With the true
sampling positions, the best prediction quality is expected
for this case.
Case 2: Figs. 5-(b), (e), and (h) show the resulting fields, by
applying Algorithm 1 naively to measured sampling posi-
tions including noisy locations. The results clearly illustrate
that naively applying Algorithm 1 to noisy sampling posi-
tions can potentially distort prediction at a significant level
as shown in Figs. 5-(b) and (h).
Case 3: Figs. 5-(c), (f), and (i) show the resulting fields, by
applying Algorithm 2 with m = 1. The resulting prediction
quality is much improved as compared to Case 2 and is even
comparable to the result for Case 1.

The results confirm that the quality of the prediction in
Case 3 is not much compromised as compared to Case 1 and
demonstrate the capability of our proposed algorithm to deal with
uncertain sampling positions. The average of the squared empir-
ical errors in Case 3 is 42% smaller than that of Case 2.

In this study, the fixed running time using Matlab R2009b
(MathWorks) on a PC (2.4 GHz Intel Core 2 Duo Processor) is
about 10 minutes for the proposed approximation (m = 1) which
is fast enough for real world implementation.

Table 1 summarizes results of Case1, Case 2, Case 3 (our
proposed approach), and another previously proposed approach
in [20] for this experimental data and the simulated realization
in [20] in term of the prediction precision and the computational
time. The exact configuration of the simulation study can be
found in [20]. The level of precision between the proposed ap-
proach (Case 3) based on the MAP estimator and another one
proposed in [20] are comparable. The major contribution of this
paper is the improvement in the computation time of the pro-
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Figure 5. The prediction results of Cases 1, 2, and 3 at time t = 1 are
shown in the first, second, third columns, respectively. The first, second,
and third rows correspond to the predictions, prediction error variance,
and squared empirical error fields between predicted and true fields. True,
noisy, and probable sampling positions are shown in circles, stars, and
corners of squares, respectively.

posed solution. The proposed solution improves the computation
time by 200% as shown in Table 1.

6 Conclusion
We have discussed the problem of predicting a spatio-

temporal field using successive noisy measurements obtained
by robotic sensors, some of which have uncertain localization.
We modeled the spatio-temporal field of interest using a GMRF
and designed an efficient and sequential prediction algorithm
for computing the approximated predictive inference from a
Bayesian point of view. The proposed algorithm is computa-
tionally efficient and scalable as the number of measurements
increases. Application of our proposed scheme to simulated and
real-world data shows that our approach outperforms the previ-
ously developed approximated and exact Bayesian solutions in
computation time while keeping the comparable level of preci-
sion. The future work is to evaluate the proposed algorithms in a
realistic experimental setup.
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