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ABSTRACT
In this paper, we consider a deterministic adaptive control

framework to design and analyze a class of multi-agent systems
that locate peaks of unknown static fields in a distributed and
scalable manner. Each agent is driven by swarming and gra-
dient ascent efforts based on its own recursively estimatedfield
via locally collected measurements by itself and its neighboring
agents. The convergence properties of the proposed multi-agent
systems are analyzed. We also provide a sampling scheme to fa-
cilitate the convergence. The simulation study confirms thecon-
vergence analysis of the proposed algorithms.

1 Introduction
In recent years, significant enhancements have been made

in the areas of sensor networks and mobile sensing agents [1–6].
Mobile sensing agents usually have an ad-hoc wireless commu-
nication network in which each agent usually shares information
with neighboring agents within a short communication range,
with limited memory and computational power. Mobile sensing
agents are often spatially distributed in an uncertain surveillance
environment. In order to achieve various tasks such as explo-
ration, surveillance, and environmental monitoring, mobile sens-
ing agents require distributed coordination to adapt to environ-
ments in order to perform a global goal.

Distributed control laws were proposed to achieve optimal
coverage configurations for the known distributions [1]. De-
centralized and adaptive control algorithms have been proposed
in [6] for networks of robots to converge to optimal sensing con-

∗Address all correspondence to this author.

figurations while simultaneously learning the distribution of sen-
sory information in the environment.

Tanner [3] and Olfati-Saber [4] developed comprehensive
analyses of the flocking algorithm by Reynolds [7]. In general,
the collective swarm behaviors of birds/fish/ants/bees areknown
to be the outcomes of natural optimization [8,9]. These flocking
algorithms have been used to move mobile sensor networks in
groups [10,11].

Among other problems in mobile sensor networks, gradient
climbing over an unknown field of interest has attracted muchat-
tention of control engineers [11–14]. The cooperative network of
agents that performs adaptive gradient climbing in a distributed
environment was presented in [12, 13]. The centralized network
can adapt its configuration in response to the sensed environment
in order to optimize its gradient climb.

In [11], a distributed learning and control algorithm is pro-
posed to be executed by each agent independently to estimatean
unknown field of interest from noisy measurements and to coor-
dinate multiple agents in a distributed manner to discover peaks
of the unknown field. Each mobile agent moves towards peaks
of the field using the gradient of its estimated field while avoid-
ing collision and maintaining communication connectivity. The
convergence properties of the resulting collective stochastic al-
gorithm were analyzed using the Ljung’s ODE approach. In the
analysis, the estimation error dynamics have been averagedout
under sufficient conditions and so only the ODE of the controlled
multi-agent system dynamics could be considered.

In this paper, we consider a deterministic adaptive control
framework to design and analyze a class of multi-agent systems
that locate peaks of unknown static fields in a distributed and



scalable manner. We use swarming artificial potentials to main-
tain communication connectivity and avoid collisions. Thepro-
posed distributed adaptive control consists of swarming effort
and the gradient-based motion control based on the recursively
updated field. The associated recursive estimation laws have
been developed by gradient-based and recursive least squares
(RLS) algorithms. In contrast to [11], the closed-loop dynam-
ics of the motion control and the parameter estimation for the
multi-agent system under proposed strategies have been ana-
lyzed. A set of sufficient conditions for which the convergence
of the closed-loop multi-agent system is achieved has been pro-
vided. To facilitate the successful convergence, we provide an
additional scalable and distributed sampling strategy that keeps
selective past measurements. The effectiveness of the proposed
schemes has been demonstrated via the simulation study.

2 Preliminaries
In this section, we describe the mathematical framework for

mobile sensing agent networks and explain notations used inthis
paper.

Notations are standard. LetR,R≥0,R>0 denote, respec-
tively, the set of real, non-negative real, and positive real. The
positive definiteness (respectively, semi-definiteness) of a ma-
trix A is denoted byA ≻ 0 (respectively,A � 0). In ∈ R

n×n

denotes the identity matrix of sizen. 1n ∈ R
n denotes the col-

umn vector of sizen whose elements are 1.|N| denotes the
cardinality of the setN. diag(A,B) denotes the (generalized)
block diagonal matrix ofA∈ R

a×m, B∈ R
b×n and is defined by

diag(A,B) =

[

A 0
0 B

]

∈ R
(a+b)×(m+n).

We assume thatn number of sensing agents are distributed
over the surveillance regionQ⊂R

2. Q is assumed to be a convex
and compact set. The identity of each agent is indexed byI :=
{1,2, · · · ,n}. Let qi(t) ∈ Q be the location of thei-th sensing
agent at timet ∈R≥0 and we defineq := col(q1,q2, · · · ,qn)∈R

2n

the configuration of the multi-agent system.
To describe the group behavior of mobile sensing agents

and interactions with neighbors with the limited communica-
tion capability, the graph notation is used. We assume that each
agent can communicate with its neighboring agents within a lim-
ited transmission range, which is given by a radius ofr. The
neighborhood of agenti with a configuration ofq is defined by
N (i,q) := { j ∈ I |(i, j) ∈ E(q)}. Therefore,(i, j) ∈ E(q) if and
only if ‖qi(t)− q j(t)‖ ≤ r. We often useNi instead of using

N (i,q) for simplicity. We defineN i as the union of indexi and
indices of its neighbors, i.e.,N i := {i}∪Ni. We use the adja-
cency matrixA := [ai j ] of an undirected graphGas defined in [2].
A := [ai j ] is symmetrical. The elementai j of adjacency matrix
is defined asai j = σw(ε−di j ), with σw(y) = 1

1+e−wy , wheredi j

is a distance between neighboring agentj and agenti itself, σw

is the sigmoid function with constantsw > 0 andε > 0. The
scalar graph LaplacianL = [l i j ] ∈ R

n×n is a matrix defined as
L := D(A)−A, whereD(A) is a diagonal matrix given by, i.e.,

D(A) := diag(∑n
j=1ai j ). The 2-dimensional graph Laplacian is

defined aŝL2 := L⊗ I2, where⊗ is the Kronecker product. The
quadratic disagreement functionΨG :R2n →R≥0 is used to eval-
uate the group disagreement in the network of agentsΨG(p) :=
1
4 ∑(i, j)∈E(q)ai j ‖p j − pi‖2, wherep := col(p1, p2, · · · , pn) ∈R

2n.
A disagreement function [4, 15] can be expressed via the Lapla-
cian L̂2: ΨG(p) = 1

2 pT L̂2p, and hence the gradient ofΨG(p)
w.r.t. p is given by∇ΨG(p) = L̂2p.

We use attractive and repulsive potential functions similar
to ones used in [3, 4, 11] to make a swarming behavior. To en-
force a group of agents to satisfy a set of algebraic constraints
‖qi −q j‖= d for all j ∈ Ni , we use a smooth collective potential
function [11]

U1(q) := ∑
i

∑
j∈N (i,q), j 6=i

Ui j (‖qi −q j‖2)

= ∑
i

∑
j∈N (i,q), j 6=i

Ui j (r i j ),
(1)

wherer i j := ‖qi −q j‖2. The pair-wise attractive/repulsive poten-
tial functionUi j (·) in (1) is defined by

Ui j (r i j ) :=
1
2

(

log(α+ r i j )+
α+d2

α+ r i j

)

, if r i j < d2
0,

otherwise (i.e.,r i j ≥ d2
0), it is defined according to the gradient

of the potential, which will be described shortly.
Hereα,d ∈ R>0 andd < d0. The gradient of the potential

with respect toqi for agenti is given by

∇U1(qi) :=
∂U1(q)

∂q̃i

∣

∣

∣

q̃i=qi
= ∑

j 6=i

∂Ui j (r)

∂r

∣

∣

∣

r=r i j
(qi −q j)

=







∑ j 6=i
(r i j −d2)(qi−q j )

(α+r i j )2
if r i j < d2

0

∑ j 6=i ρ
(√

r i j−d0
|d1−d0|

) ‖d2
0−d2‖

(α+d2
0)

2 (qi −q j) if r i j ≥ d2
0,

whereρ : R≥0 → [0,1] is the bump function [4]

ρ(z) :=











1, z∈ [0,h);
1
2

[

1+ cos
(

π (z−h)
(1−h)

)]

, z∈ [h,1];

0, otherwise.

A potentialU2 [11] is also used to model the environment.
U2 enforces each agent to stay inside the closed and connected
surveillance region inQ and prevents collisions with obstacles in
Q. We constructU2 such that it is radially unbounded inq, i.e.,
U2(q)→ ∞ as‖q‖→ ∞. This condition will be used for making
a Lyapunov function candidate radially unbounded. Define the



total artificial potential by

U(q) := k1U1(q)+ k2U2(q), (2)

wherek1,k2 ∈ R>0 are weighting factors.

3 Static environmental field modeling
Suppose that the scalar environmental fieldµ(ν) is generated

by a network of radial basis function [11]:

µ(ν) =
m

∑
j=1

φ j(ν)θ j = φT(ν)θ, (3)

whereφT(ν) andθ are defined respectively by

φT(ν) =
[

φ1(ν) φ2(ν) · · · φm(ν)
]

∈ R
1×m

,

θ =
[

θ1 θ2 · · · θm
]T ∈ R

m×1
.

(4)

Gaussian radial basis functionsφ j(ν) are given by

φ j(ν) =
1
β j

exp

(

−‖ν− ξ j‖2

σ2
j

)

, ∀ j ∈ M, (5)

whereM := {1, · · · ,m}, σ j is the width of the Gaussian basis
and β j is a normalizing constant. Centers of basis functions
{ξ j | j ∈ M} are uniformly distributed in the surveillance region
Q. The partial derivative ofφ(x)∈R

m×1 with respect tox∈R
2×1

evaluated atx∗ is denoted byφ′(x∗) and is given as follows.

φ′(x∗) :=
∂φ(x)

∂x

∣

∣

∣

x=x∗
∈R

m×2
.

The gradient of the field atqi is denoted by

∇µ(qi) =
∂µ(x)

∂x

∣

∣

∣

x=qi
∈ R

2×1
. (6)

Using (3), (6) can be represented in terms ofθ,

∇µ(qi) =
∂φT(x)

∂x

∣

∣

∣

x=qi
θ = φ′T(qi)θ ∈ R

2×1
. (7)

The estimate of∇µ(qi) based on̂θ is denoted by∇µ̂(qi).

4 Distributed adaptive control
In this chapter, we propose a distributed adaptive control al-

gorithm. The adaptive control law for each agent will be gener-
ated using only local information from neighboring agents.The
dynamics of agenti is given by

dqi(t)
dt

= pi(t),

dpi(t)
dt

= ui(t),
(8)

whereui(t) is the input of agenti. The control inputui(t) is
proposed as follows.

ui(t) =−∇U(qi(t))− kdi pi(t)−∇ΨG(pi(t))

+ k4φ′T(qi(t))θ̂i(t),
(9)

whereθ̂i(t) is the estimate ofθ(t) by agenti using the recursive
parameter estimation algorithms.

To achieve a consensus, we use a quadratic disagreement
functionΨG(θ̂d(t)): Rmn→ R≥0, which is defined as

ΨG(θ̂d(t)) =
1
4 ∑
(i, j)∈ε(q)

ai j ‖ θ̂ j (t)− θ̂i(t) ‖2=
1
2

θ̂T
d (t)L̂mθ̂d(t),

whereL̂m = L⊗ Im, andθ̂d(t) = col(θ̂1(t), · · · , θ̂n(t)). We have
used its gradient at̂θi(t) in (9), which is given by

∇ΨG(θ̂i(t)) = ∑
j∈Ni

ai j (q(t))(θ̂i(t)− θ̂ j(t)).

To develop estimators forθi(t), the error vectorei(t) of
agenti between the estimated values and measured values is de-
fined by

ei(t) =−











µ̂i(qi(t))−µ(qi(t))
µ̂i(q j(t))−µ(q j(t))

...
µ̂i(qk(t))−µ(qk(t))











,

and can be rewritten by

ei(t) =−











φT(qi(t))θ̃i(t)
φT(q j(t))θ̃i(t)

...
φT(qk(t))θ̃i(t)











=−Φi(t)θ̃i(t),



whereθ̃i(t) := θ̂i(t)−θi(t) and

Φi(t) =











φT(qi(t))
φT(q j(t))

...
φT(qk(t))











∈ R
|N i |×m

,

with j, · · · ,k∈ Ni .
Using the gradient-based estimator,θ̂i(t) is updated by the

following adaptive law.

dθ̂i(t)
dt

= γiΦT
i (t)ei(t)− γik4φ′(qi(t))pi(t)− k6γi∇ΨG(θ̂i(t)),

(10)

whereγi is the estimation gain andk6 is a consensus gain for
parameter estimates.

Using the recursive least squares (RLS) estimator,θ̂i(t) is
updated by the following adaptive law.

dθ̂i(t)
dt

=PiΦT
i (t)ei(t)−Pik4φ′(qi(t))pi(t)

− k6Pi∇ΨG(θ̂i(t)),

dPi(t)
dt

=−Pi(t)ΦT
i (t)Φi(t)Pi(t),

(11)

wherePi(t) is defined by

Pi(t) =

(∫ t

0
ΦT

i (τ)Φi(τ)dτ
)−1

∈ R
m×m

.

4.1 Collective dynamics of agents
The global collective cost functionCd(q(t)) for all agents is

defined byCd(q(t)) = k4 ∑i∈I [µmax−µ(qi(t))] = k4 ∑i∈I [µmax−
φT(qi(t))θ]. The collective estimate ofCd(q(t)) by all agents
at timet is Ĉd(q(t)) and is given byĈd(q(t)) = k4 ∑i∈I [µmax−
µ̂i(qi(t))] = k4 ∑i∈I [µmax−φT(qi(t))θ̂i(t)], where the estimate of
µ(ν) at ν in (3) by agenti is denoted by ˆµi(ν) and is given as
µ̂i(ν) := φT(ν)θ̂i(t). The gradient ofCd at q(t) is given by

∇Cd(q(t)) =−k4











φ′T(q1(t))
φ′T(q2(t))

...
φ′T(qn(t))











θ =−Ad(t)θd,

whereθd := 1n⊗θ. Ad(t) is defined by

Ad(t) = k4diag(φ′T(q1(t)), · · · ,φ′T(qn(t))) ∈ R
2n×mn

.

The collective estimate of∇Cd(q(t)) by all agents is denoted by
∇Ĉd(q(t)) and is given by

∇Ĉd(q(t)) =−k4







φ′T(q1(t))θ̂1(t)
...

φ′T(qn(t))θ̂n(t)






=−Ad(t)θ̂d(t).

The collective dynamics of agents from (8) and (9) are given by

dq(t)
dt

= p(t),
dp(t)

dt
=−∇U(q(t))−Kdp(t)

−∇ΨG(p(t))−∇Ĉd(q(t)),
(12)

where q(t) = col(q1(t), · · · , qn(t) ), and p(t) =
col( p1(t), · · · , pn(t) ).

The collective version of the adaptive law in (10) for all
agents is given by

dθ̂d(t)
dt

= ΓdΦT
d (t)ed(t)−ΓdAd(t)

T p(t)−ΓdL̂mθ̂d(t), (13)

whereΓd = Γ⊗ Im andΓ = ΓT ≻ 0 is the diagonal matrix given
by Γ = diag(γ1, · · · ,γn). Notice thatL̂mθ̂d(t) = L̂mθ̃d(t) in (13).
The collective errored(t) is defined as

ed(t) =







e1(t)
...

en(t)






=







−Φ1(t)θ̃1(t)
...

−Φn(t)θ̃n(t)






=−Φd(t)θ̃d(t), (14)

whereθ̃d(t) = col(θ̃1(t), · · · , θ̃n(t)) is the estimation error vector
defined bỹθd(t) := θ̂d(t)−θd. Φd(t) = diag(Φ1(t), · · · ,Φn(t))∈
R

(

∑i∈I |N i |
)

×mn
.

The collective version of the adaptive law in (11) for all
agents is given by

dθ̂d(t)
dt

=−Pd(t)ΦT
d (t)Φd(t)θ̃d(t)

−Pd(t)Ad(t)
T p(t)−Pd(t)L̂mθ̂d(t),

dPd(t)
dt

=−Pd(t)ΦT
d (t)Φd(t)Pd(t).

(15)

where Pd(t) is defined by Pd(t) = diag(P1(t), · · · ,Pn(t)) ∈
R

mn×mn
.

4.2 Convergence analysis
In this section, we present the results for convergence prop-

erties of the proposed multi-agent systems. To this end, we define



the global performance cost function of the multi-agent system
with the gradient-based algorithm in (13)

Vd(q(t), p(t), θ̃d(t)) =U(q(t))+
pT(t)p(t)

2

+Cd(q(t))+
θ̃T

d (t)Γ
−1
d θ̃d(t)

2
.

(16)

The global performance cost function for the RLS algorithm in
(15) are defined by

Vd(q(t), p(t), θ̃d(t)) =U(q(t))+
pT(t)p(t)

2

+Cd(q(t))+
θ̃T

d (t)P
−1
d (t)θ̃d(t)

2
.

(17)

The collective performance cost function will be minimizedby
agents. The convergence properties of the multi-agent system is
summarized by the following theorem.

Theorem 1. We consider the distributed control law in(9)
based on the gradient-based estimator in(10) (respectively, the
RLS estimator in(11)) along with the global performance cost
function Vd in (16) (respectively,(17)). For any initial state
x0 = col(q0, p0, θ̃d0) ∈ Dd, where Dd is a compact set. Let
DAd = {x ∈ D | Vd(x) ≤ a} be a level-set of the collective cost

function. Let Dcd be the set of all points in DAd, wheredVd(x)
dt = 0.

Then every solution starting from DAd approaches the largest in-
variant set Md contained in Dcd as t→ ∞.

Moreover, for the adaptive control using the gradient-based
estimator (respectively, the RLS estimator), if(L̂2 + Kd) and
(ΦT

d (t)Φd(t)+ L̂m) (respectively,(1
2ΦT

d (t)Φd(t)+ L̂m)) are pos-
itive definite, then any point x∗ = col(q∗,0,0) in Md is a crit-
ical point of the cost function Vd(x), which implies that x∗ is
either a (local) minimum of Vd(x) or an inflection point, i.e.,
∂Vd(x)

∂x

∣

∣

∣

x=x∗
= 0, andθ̂d(t) converges toθd as t→ ∞.

Proof of Theorem 1 in the case of the gradient-based estimator.
Using (12), the time derivative ofVd(x) in (16) is obtained

by

dVd

dt
=

[

∇U(q(t))+∇Cd(q(t))
p(t)

]T

[

p(t)
−∇U(q(t))−∇ΨG(p(t))−Kdp(t)−∇Ĉd(q(t))

]

+ θ̃T
d (t)Γ

−1
d

dθ̂d(t)
dt

=− pT(t)(L̂2+Kd)p(t)

+ θ̃T
d (t)

(

AT
d (t)p(t)+Γ−1

d
dθ̂d(t)

dt

)

.

(18)

With (13) and (18), we obtain

dVd

dt
=− pT(t)(L̂2+Kd)p(t)

− θ̃T
d (t)(Φ

T
d (t)Φd(t)+ L̂m)θ̃d(t)≤ 0.

(19)

Let x(t) = col(q(t), p(t), θ̃d(t)). From (16), we conclude that
Vd(x(t)) is radially-unbounded, i.e.,Vd(x(t))→∞ as‖x(t)‖→∞.
Hence,DAd = {x(t) | Vd(x(t)) ≤ a} is bounded andDAd with
dVd(x)

dt ≤ 0 in (19) for allx∈ DAd is a positively invariant set. By
LaSalle’s invariant principle every pointx(t) in DAd approaches
Md included inDcd which is given by

{

x(t) | dVd

dt
=−pT(t)(L̂2+Kd)p(t)

− θ̃T
d (t)(Φ

T
d (t)Φd(t)+ L̂m)θ̃d(t) = 0

}

,

(20)

ast → ∞. Letx∗ be a solution that belongs toDcd. If (L̂2+Kd)≻
0 and(ΦT

d (t)Φd(t)+ L̂m) ≻ 0, ∀x∈ Dd, from (20), any pointx∗

in Md is the form ofx∗(t) = col(q∗(t), p∗ ≡ 0, θ̃∗d ≡ 0).

θ̃∗d ≡ 0⇒ 0≡ θ̂∗d(t)−θd ⇒ ∇Ĉd(q
∗)≡ ∇Cd(q

∗).

From (12), we have

θ̃∗d ≡ 0, p∗(t)≡ 0⇒ dq∗(t)
dt

≡ 0⇒ 0≡−∇U(q∗)−∇Ĉd(q
∗).

This implies thatx∗ is a critical point of the cost functionVd(x)
andθ̂d(t) converges toθd. QED.

Proof of Theorem 1 in the case of the RLS estimator.
Using (12), the time derivative ofVd(x) in (17) is obtained

by

dVd

dt
=

[

∇U(q(t))+∇Cd(q(t))
p(t)

]T

[

p(t)
−∇U(q(t))−∇ΨG(p(t))−Kdp(t)−∇Ĉd(q(t))

]

+ θ̃T
d (t)P

−1
d (t)

dθ̂d(t)
dt

+
θ̃T

d (t)
dP−1

d
dt θ̃d(t)

2
=− pT(t)(L̂2+Kd)p(t)

+ θ̃T
d (t)

(

AT
d (t)p(t)+P−1

d (t)
dθ̂d(t)

dt

)

+
1
2

θ̃T
d (t)

dP−1
d (t)

dt
θ̃d(t).

(21)



With (15) and (21), we obtain

dVd

dt
=− pT(t)(L̂2+Kd)p(t)

− θ̃T
d (t)

(

1
2

ΦT
d (t)Φd(t)+ L̂m

)

θ̃d(t)≤ 0.
(22)

The rest of the proof follows as in the case of the gradient esti-
mator. QED.

5 A sampling scheme for helping convergence
To improve the possibility of satisfying the sufficient con-

ditions of convergence in Theorem 1, we provide a sampling
scheme that will help on makingΦT

d (t)Φd(t) positive definite.
In this sampling scheme, at every sampling timet, a fixed

number (m) of measurements sampled previously will be aug-
mented to the fresh measurements available at timet for agenti.
The selection of suchm additional measurements at timet for
agenti is as follows.

q̄i j (t) = arg min
q∈Ωi(t)

‖q− ξ j‖, ∀ j ∈ M, (23)

whereM := {1, · · · ,m} andξ j is the center location of thej-th
kernel.Ωi(t) is defined by

Ωi(t) :=





⋃
k∈N̄i(t)

{q̄i j (t
−) | j ∈ M}



∪





⋃
k∈N̄i(t−)

qk(t
−)



 ,

wheret− is the sampling time taken prior tot. Notice that this
selection process in (23) is scalable and distributed.

ExpandedΦi(t) due to the the augmented sampled data at
time t is as follows.

Φi(t) =
[

φ(qi(t)) · · · φ(q̄i1(t)) · · · φ(q̄im(t))
]T ∈ R

|N i+m|×m
.

6 Simulation results
We have applied the proposed multi-agent system to a scalar

environmental field illustrated as a contour map in Fig 1. This
static field was generated by the model in (3) with nine radial
basis functions, i.e.,m= 9. The estimated field was updated
continuously and used for the coordination of each agent as pro-
posed. Agents were launched at a set of randomly distributed
initial positions, which was fixed and used for all simulations
for fair comparison. Table 1 shows the parameters used for the
numerical evaluation.

Mobile agents with transmission radiusr of 0.5 were
launched from initial positions to seek the peaks of the unknown

Table 1. PARAMETERS IN THE SIMULATION

Parameters Values

Number of agentsn 20

Number of basis functionsm 9

Surveillance regionQ [0,3]2

(d,d0,d1, r) (0.3,0.39,0.5,0.5)

(k1,k2,k4,k6) (5,1,1,1)

kd 5I2n

P(0) = Γ 0.5Im

θ(0) 0m×1
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Figure 1. TRAJECTORIES OF AGENTS WITH THE DISTRIBUTED

ADAPTIVE CONTROL BASED ON THE GRADIENT-BASED ESTIMA-

TOR. THE INITIAL POSITIONS, THE ADDITIONAL SAMPLING POSI-

TIONS, AND THE FINAL POSITIONS ARE MARKED BY CIRCLES (◦),

STARS (∗), AND SQUARES (�), RESPECTIVELY.

static field in Fig 1. Figs. 1 and 2 show the simulated trajecto-
ries of agents with the gradient-based and RLS estimators, re-
spectively. These trajectories show that agents with distributed
control and learning algorithms successfully found peaks of the
unknown field for both estimator cases. Notice also that someof
agents would converge to the local minima of the field.

To evaluate the convergence rate of the parameter estima-
tion for each agent, we compute the error norm‖θ̃i(t)‖, where
θ̃i(t) := θ̂i(t)−θ for agenti, and plot‖θ̃i(t)‖ for all agentsi ∈ I

with respect to timet as in Figs. 3 and 4 for adaptive control with
the gradient-based, and RLS estimators, respectively. Under this
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Figure 2. TRAJECTORIES OF AGENTS WITH THE DISTRIBUTED

ADAPTIVE CONTROL BASED ON THE RLS ESTIMATOR. THE INITIAL

POSITIONS, THE ADDITIONAL SAMPLING POSITIONS, AND THE FI-

NAL POSITIONS ARE MARKED BY CIRCLES (◦), STARS (∗), AND

SQUARES (�), RESPECTIVELY.
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Figure 3. THE ERROR NORM ‖θ̃I (T)‖ OF AGENT I W.R.T. TIME T
FOR AGENTS WITH THE ADAPTIVE CONTROL WITH THE GRADIENT-

BASED ESTIMATOR.

distributed control and learning algorithms, there are different
groups of agents formed to share measurements locally. There-
fore, the convergence rate of each agent depends on the initial
configuration of the multi-agent system as shown in Figs. 3 and
4.

7 Conclusions
In this paper, we considered a deterministic adaptive control

framework to design and analyze a class of multi-agent systems
that locate peaks of unknown static fields of interest. Each agent
was driven by swarming and gradient ascent efforts based on its
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Figure 4. THE ERROR NORM ‖θ̃I (T)‖ OF AGENT I W.R.T. TIME T
FOR AGENTS WITH THE ADAPTIVE CONTROL WITH THE RLS ESTI-

MATOR.

own recursively estimated field via locally collected measure-
ments. The convergence properties of the proposed multi-agent
systems were analyzed. A sampling scheme to help the con-
vergence was provided. The simulation study confirmed with
the convergence analysis of the proposed algorithms. The future
work is to consider the stochastic version of this problem taking
into account the measurement noise.
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[12] Őgren, P., Fiorelli, E., and Leonard, N. E., 2004. “Cooper-
ative control of mobile sensor networks: Adaptive gradient
climing in a distributed envrironment”.IEEE Transaction
on Automatic Control,49(8), August, p. 1292.

[13] Leonard, N., Paley, D., Lekien, F., Sepulchre, R., Fratan-
toni, D., and Davis, R., 2007. “Collective motion, sensor
networks, and ocean sampling”.Proceedings of the IEEE,
95.

[14] Bachmayer, R., and Leonard, N. E., 2002. “Vehicle net-
works for gradient descent in a sampled environmen”.in
Proc. 41st IEEE Conf. Decision Control,113 117, p. 113
117.

[15] Godsil, C., and Royle, G., 2001.Algebraic Graph Theory,
Vol. 207 ofGraduate Text in Mathmatics. Springer-Verlag.


