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ABSTRACT

In this paper, we consider a deterministic adaptive control
framework to design and analyze a class of multi-agent syste
that locate peaks of unknown static fields in a distributed an
scalable manner. Each agent is driven by swarming and gra-
dient ascent efforts based on its own recursively estimgxsai
via locally collected measurements by itself and its neigimy
agents. The convergence properties of the proposed ngdtita
systems are analyzed. We also provide a sampling scheme to fa
cilitate the convergence. The simulation study confirmstme
vergence analysis of the proposed algorithms.
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figurations while simultaneously learning the distribataf sen-
sory information in the environment.

Tanner [3] and Olfati-Saber [4] developed comprehensive
analyses of the flocking algorithm by Reynolds [7]. In gehera
the collective swarm behaviors of birds/fish/ants/bee&aog/n
to be the outcomes of natural optimization [8, 9]. These flogk
algorithms have been used to move mobile sensor networks in
groups [10, 11].

Among other problems in mobile sensor networks, gradient
climbing over an unknown field of interest has attracted mateh
tention of control engineers [11-14]. The cooperative oekof
agents that performs adaptive gradient climbing in a disted
environment was presented in [12, 13]. The centralized owtw
can adapt its configuration in response to the sensed envinoin

In recent years, significant enhancements have been madejn order to optimize its gradient climb.

in the areas of sensor networks and mobile sensing ager@ifs [1—
Mobile sensing agents usually have an ad-hoc wireless cemmu
nication network in which each agent usually shares infdiona
with neighboring agents within a short communication range
with limited memory and computational power. Mobile segsin
agents are often spatially distributed in an uncertainesiiance
environment. In order to achieve various tasks such as explo
ration, surveillance, and environmental monitoring, n@béens-

ing agents require distributed coordination to adapt tdrenv
ments in order to perform a global goal.

Distributed control laws were proposed to achieve optimal
coverage configurations for the known distributions [1]. - De
centralized and adaptive control algorithms have beengzeg
in [6] for networks of robots to converge to optimal sensing-c

*Address all correspondence to this author.

In [11], a distributed learning and control algorithm is pro
posed to be executed by each agent independently to estimate
unknown field of interest from noisy measurements and to-coor
dinate multiple agents in a distributed manner to discoeakp
of the unknown field. Each mobile agent moves towards peaks
of the field using the gradient of its estimated field whileidvo
ing collision and maintaining communication connectivitthe
convergence properties of the resulting collective stetibal-
gorithm were analyzed using the Ljung’s ODE approach. In the
analysis, the estimation error dynamics have been avei@mged
under sufficient conditions and so only the ODE of the cofetbl
multi-agent system dynamics could be considered.

In this paper, we consider a deterministic adaptive control
framework to design and analyze a class of multi-agent syste
that locate peaks of unknown static fields in a distributed an



scalable manner. We use swarming artificial potentials tmma
tain communication connectivity and avoid collisions. Tgre-
posed distributed adaptive control consists of swarmirfigrief
and the gradient-based motion control based on the reelysiv
updated field. The associated recursive estimation laws hav
been developed by gradient-based and recursive leastesquar
(RLS) algorithms. In contrast to [11], the closed-loop dyra
ics of the motion control and the parameter estimation fer th
multi-agent system under proposed strategies have been ana
lyzed. A set of sufficient conditions for which the convergen

of the closed-loop multi-agent system is achieved has been p
vided. To facilitate the successful convergence, we pead
additional scalable and distributed sampling strategy kbaps
selective past measurements. The effectiveness of thegedp
schemes has been demonstrated via the simulation study.

2 Preliminaries

In this section, we describe the mathematical framework for
mobile sensing agent networks and explain notations usadsin
paper.

Notations are standard. L&,R>q,R.o denote, respec-
tively, the set of real, non-negative real, and positivd. r@he
positive definiteness (respectively, semi-definitene$s) ma-
trix A is denoted byA - O (respectivelyA = 0). I, € R™"
denotes the identity matrix of size 1, € R" denotes the col-
umn vector of sizen whose elements are 1|N| denotes the
cardinality of the selN. diagA,B) denotes the (generalized)
block diagonal matrix oA € R®*™, B € RP*" and is defined by
diagA.B) = | £ 5| € RE@0)x(min),

We assume that number of sensing agents are distributed
over the surveillance regid@ C R?. Qis assumed to be a convex
and compact set. The identity of each agent is indexed by
{1,2,---,n}. Letqi(t) € Q be the location of thé-th sensing
agentat time¢ € R>o and we defing := col(qy,gp, - - - ,Gn) € R*"
the configuration of the multi-agent system.

To describe the group behavior of mobile sensing agents
and interactions with neighbors with the limited communica
tion capability, the graph notation is used. We assume thett e
agent can communicate with its neighboring agents withima |
ited transmission range, which is given by a radius.ofThe
neighborhood of agerntwith a configuration ofj is defined by
A(i,q) :={j€ I|(i,j) € E(q)}. Therefore(i,j) € £(q) ifand
only if [|lgi(t) —q;j(t)[| <r. We often use/{ instead of using
A(i,q) for simplicity. We defineA; as the union of indekand
indices of its neighbors, i.eA; := {i} UA{. We use the adja-
cency matriXA:= [a;;] of an undirected grap@ as defined in [2].
A= [a] is symmetrical. The elemeat; of adjacency matrix
is defined asj = ow(€ — dij), With Ow(y) = 1=y, Whered;
is a distance between neighboring aggand agent itself, oy
is the sigmoid function with constantg > 0 ande > 0. The
scalar graph Laplaciah = [l;;] € R™" is a matrix defined as
L := D(A) — A, whereD(A) is a diagonal matrix given by, i.e.,

D(A) := diag3_;aj). The 2-dimensional graph Laplacian is
defined ad, ;=L ® l2, where® is the Kronecker product. The
quadratic disagreement functibf : R?" — R>ois usedto eval-
uate the group disagreement in the network of agél&p) =
330z &jllpj — pill%, wherep = col(p1, pz,--- , pn) € R?".
A disagreement function [4, 15] can be expressed via thed-apl
cian L: Wg(p) = 3p"L2p, and hence the gradient &#g(p)
W.r.t. pis given byOWgs(p) = Lap.

We use attractive and repulsive potential functions simila
to ones used in [3, 4, 11] to make a swarming behavior. To en-
force a group of agents to satisfy a set of algebraic comsgrai

lai —qj|| = dforall j € Af, we use a smooth collective potential
function [11]
=y 3y Ujlla-al?
Fjen(i,a),j#
1)
=% > U,
jenl(i,a),jA
whererj; = ||gi —q |2, The pair-wise attractive/repulsive poten-
tial functionU;; (-) in (1) is defined by
1 o+d?\ . 2
Uij (rij) := > log(a +rij) + m ,if rij < dg,

otherwise (i.e.rij > dg), it is defined according to the gradient
of the potential, which will be described shortly.

Herea,d € R.p andd < dp. The gradient of the potential
with respect tay; for agent is given by

. 0U1(q) oUij (r) .
Vi) = g - =3 o g, @)
ZHH |'|J *:Jr)r(IQi)*qj) |f rij <d2
d d2—d?
Z#.D(ﬂ%f)”o&—dz)”(q qj) if rjj >d0,

wherep : R>o — [0, 1] is the bump function [4]

ze [0,h);
ze [h1];
otherwise.

L

[1 + cos( (1=

p@): =k

O Nk B

A potentialU; [11] is also used to model the environment.
U, enforces each agent to stay inside the closed and connected
surveillance region i and prevents collisions with obstacles in
Q. We construct), such that it is radially unbounded @ i.e.,
Uz(g) — « as||q|| — . This condition will be used for making
a Lyapunov function candidate radially unbounded. Defire th



total artificial potential by

U (q) := kiU1(q) + koU2(q), ()

whereks, ko € R.g are weighting factors.

3 Static environmental field modeling
Suppose that the scalar environmental fi€hd) is generated
by a network of radial basis function [11]:

W) = S ()8 = T (v)6, @)
3o

whereg' (v) and8 are defined respectively by

@' (v) = [@1(v) 92(V) - @m(v) | € R, @
o=[616%...6m" e R™™,
Gaussian radial basis functiopgv) are given by
1 —IV=&I17Y .
(V)= —exp| ————1|,VjeM, 5
@ (V) B p( 2 j (5)

whereM := {1,--- ,m}, g; is the width of the Gaussian basis
and 3; is a normalizing constant. Centers of basis functions
{&;|] € M} are uniformly distributed in the surveillance region

Q. The partial derivative af(x) € R™® with respect tox € R?*1
evaluated ax* is denoted byp (x*) and is given as follows.

q{ (X*) . a(p(X)

T ox

mx2

X=X*

The gradient of the field ai; is denoted by

Ou(ai) = X

o e R, (6)

X=0j

Using (3), (6) can be represented in term®of

99" (x)
1) X=0j

Op(ai) = 0 =g ()0 € R, (7)

The estimate oflj(q;) based o is denoted by Jfi(q).

4 Distributed adaptive control

In this chapter, we propose a distributed adaptive control a
gorithm. The adaptive control law for each agent will be gene
ated using only local information from neighboring ageritke
dynamics of ageritis given by

da(t) _
dp(t) _,
a4

whereu;(t) is the input of agent. The control inputu;(t) is
proposed as follows.

Ui(t) = — DU (Gi(t)) — ka pi(t) — O%Ws(pi(t))

N 9
kg (@ ()81 1), ©)

where;(t) is the estimate o(t) by agent using the recursive
parameter estimation algorithms.

To achieve a consensus, we use a quadratic disagreement
functionWg(84(t)): R™"— R-g, which is defined as

« « Lar ~ -
Y 2 1180 -8 = 583 () Labat),
(i,i)ee(a)

wherelm = L ® Iy, andBq(t) = col(81(t), -+ ,Bn(t)). We have
used its gradient & (t) in (9), which is given by

DWe(Bi(t) = 5 aij(a(t)Bi(t) —8;(1)).
jeN

To develop estimators foBj(t), the error vectorg(t) of
agenti between the estimated values and measured values is de-
fined by



where;(t) := 6(t) — 6;(t) and

cpl(q.(t))
Pi(t) = (p(q:’()) c RI7GIxm
@' (ok(t))
with j,--- k€ A

Using the gradient-based estimatérgt) is updated by the
following adaptive law.

% =y (Dai(t) - (1) — kevi IWo (61 (1)),

(10)

vika' (i (t

wherey; is the estimation gain ankk is a consensus gain for
parameter estimates.

Using the recursive least squares (RLS) estima&Qt) is
updated by the following adaptive law.

déi(t)

—i =P (ha(t) - Rk (@ ) pi(t)
—ksPOWs(Bi(t)), (12)
PO — Rwel HonRo.

wherePR,(t) is defined by

R (t) = ( [T (r)dT)

4.1 Collective dynamics of agents

The global collective cost functioBy(q(t)) for all agents is
defined byCq(q(t)) = Ka Jic s [Hmax— K(Gi(t))] = Ka ¥ic r[Mmax—
@' (qi(t))8]. The collective estimate oq4(q(t)) by all agents
at timet is Cq4(q(t)) and is g|ven b)Cd( (1)) = kaSicr[Hmax—
(G (1))] = ke Sic s [Hmax— @' (1 (£))8i(t)], where the estimate of
M(v) atv in (3) by agenti is denoted byyTv) and is given as
(V) := @' (v)8i(t). The gradient o€y atq(t) is given by

-1
c Rmxm

¢ (On(t)

whereby 1= 1,® 6. Aq4(t) is defined by

Ad(t) = k4d|aq(dT (Q1(t)) . ’q{T (qn(t))) c Ranmn.

The collective estimate 6fCq(q(t)) by all agents is denoted by
0OCq4(q(t)) and is given by

@7 (qu(t))Ba(t)
0Cq(q(t)) = —ka : = —Aq(t)Bq(t).
(\dT(Qn(t))én(t)

The collective dynamics of agents from (8) and (9) are given b

dq(t) dp(t)

ek p(t), —ar =~V (q(t)) — Kap(t) (12)
—DWg(p(t)) — OC4(q(t)),
where Q(t) = CO'( ql(t)v Ty qn(t) )a and p(t) =
CO'( pl(t)v Tty pn(t) )

The collective version of the adaptive law in (10) for all
agents is given by

déd (t
dt

~—

=Tq®] (t)eg(t) — FgA(t)T p(t) — Falmba(t), (13)

wherelg =T @ Ipandlf =TT -0 is the diagonal matrix given
by ' =diaglyi, - ,Yn). Notice thatLmBq(t) = LmBqy(t) in (13).
The collective erroey(t) is defined as

—®y(t)Ba(t)
at)=| @ |= ; =—dy(t)By(t), (14)
—®n(t)Bhn(t)

wheredq(t) = col(8 (t),
defined bydy(t) :=8q(t) —

R(Ziel \9\_0\) xmn
The collective version of the adaptive law in (11) for all
agents is given by

B (t)) is the estimation error vector
. Pglt) = diag (1), -, But)) €

Bolt) __ 1)) (0)0u(0)Bu(t)
—Pa(t)Aq(t)Tp(t) — Pa(t)Lmba(t),  (15)
RO — Ry oatPs()

where Py(t) is defined byPy(t) = diag(Pi(t),---

Rmnx mn

7Pn(t)) €

4.2 Convergence analysis
In this section, we present the results for convergence-prop
erties of the proposed multi-agent systems. To this end gfieed



the global performance cost function of the multi-agenteys
with the gradient-based algorithm in (13)

~ i (16)
] (t)r;10q(t
+Cafay) + 22O
The global performance cost function for the RLS algoritim i
(15) are defined by

. - 17
+Calq(t)) + BP0 +

The collective performance cost function will be minimizeyg
agents. The convergence properties of the multi-agergsyist
summarized by the following theorem.

Theorem 1. We consider the distributed control law if®)
based on the gradient-based estimato(10) (respectively, the
RLS estimator ir{11)) along with the global performance cost
function \§ in (16) (respectively,(17)). For any initial state
Xo = col(qo, po,édo) € Dg, where 0 is a compact set. Let
Dad = {x € D | Vy(X) < a} be a level-set of the collective cost

function. Let Qg be the set of all points in ki, Wheredvgt< ) 0.
Then every solution starting fromag approaches the largest in-
variant set M contained in Qg as t— .

Moreover, for the adaptive control using the gradient-tthse
estimator (respectively, the RLS estimator)iip + Kq) and
(®F ()Pa(t) + L) (respectively( 3] (t)Pq(t) + L)) are pos-
itive definite, then any pointx= col(g*,0,0) in Mq is a crit-
ical point of the cost function §x), which implies that X is

either a (local) minimum of 4x) or an inflection point, i.e.,
Va(X)

o |y = 0, andby(t) converges td@q as t— oo.

Proof of Theorem 1 in the case of the gradient-based estimato
Using (12), the time derivative &fy(x) in (16) is obtained
by

dVa _ [Du (at) + Dcd<q<t>>}T
dt p(t)
{ p(t) ) ]
—0U (q(t)) — OWs(p(t)) — Kap(t) — OCq(q(t))
8 (t)rdldegt(t)

(18)

With (13) and (18), we obtain

e B0+ Ka)plt)

— B3 () (PF (1) Py (t) + Lm)Ba(t) <O

(19)

Let x(t) = col(q(t), p(t),B8q(t)). From (16), we conclude that
Vg (x(t)) is radially-unbounded, i.eVg (x(t)) — co as||x(t)|| — co.
Hence,Dag = {X(t) | Va(x(t)) < a} is bounded andag with
dvd( X) < 0in (19) for allx € Dag is a positively invariant set. By
LaSaIIes invariant principle every poinft) in Dag approaches
My included inD¢g which is given by

[x) 1 D8 = g 1)L+ k) pl0) o0
— B (@F O)Pa(t) + Lm)Ba(t) = O},

ast — o. Letx" be a solution that belongs B. If (Lo +Kq) >
0 and(®{ (t)®Pq(t) + Lm) > 0, Vx € Dy, from (20), any poink*
in Mq is the form ofx*(t) = col(g*(t), p* = 0,63 = 0).

8;=0=0=8;(t) — 6g = OCy(q") = OC4(q).

From (12), we have

dg(t)

0= at

0, =0,p(t) =

=0=0=-0U(q") — OC(q").

This implies thai" is a critical point of the cost functiovi (x)
andBy(t) converges t®y. QED.

Proof of Theorem 1 in the case of the RLS estimator.
Using (12), the time derivative &fy4(x) in (17) is obtained
by

vy

{ p(t) . ]
—0U(q(t)) — OWa(p(t)) — Kap(t) — OCa(q(t))

A a de

=—p'(t)(L2+Kq)p(t)

0 (Ag Op(t) + Pﬁ(t)degf”)

(21)



With (15) and (21), we obtain Table 1. PARAMETERS IN THE SIMULATION

Parameters Values
% — T ()L 4 Ka)p(t) Number of agenta 20
(1o N (22) Number of basis functions 9
—04(t) [ Dy (t)Pg(t) +Lm ) Bg(t) <O
a(t) (2 a (1)Pa(t) + m) a(t) < Surveillance regio® [0,3]2
(d,dp,ds,r) (0.3,0.39,0.5,0.5)
The rest of the proof follows as in the case of the gradierit est
mator. QED. (ka, k2, Kka,ke) (5,1,1,1)
kd Slon
5 A sampling scheme for helping convergence PO) =T 0.5lm
To improve the possibility of satisfying the sufficient con- 8(0) Omx1

ditions of convergence in Theorem 1, we provide a sampling
scheme that will help on makir@g] (t)®q(t) positive definite.

In this sampling scheme, at every sampling tima fixed
number () of measurements sampled previously will be aug-
mented to the fresh measurements available atttifoeagent.

The selection of sucm additional measurements at tirhéor
agenti is as follows.

qij (t) = argqergilgg) la=¢&ll, VjeM, (23)

whereM := {1,--- ,m} and§{; is the center location of thgth
kernel.Qi(t) is defined by

(U {aij(t |J€M}) ( U qk(t‘)),
keAG(t) keAg(t™)

wheret™ is the sampling time taken prior to Notice that this

selection process in (23) is scalable and distributed. 0 05 1 15 2 25 3
Expanded®;(t) due to the the augmented sampled data at
timet is as follows. Figure 1. TRAJECTORIES OF AGENTS WITH THE DISTRIBUTED

ADAPTIVE CONTROL BASED ON THE GRADIENT-BASED ESTIMA-

- TOR. THE INITIAL POSITIONS, THE ADDITIONAL SAMPLING POSI-

®i(t) = [@(ai(t)) - @@L(t) - QGim(t)) ] € RIAGHM>m, TIONS, AND THE FINAL POSITIONS ARE MARKED BY CIRCLES (o),
STARS (), AND SQUARES ((J), RESPECTIVELY.

6 Simulation results

We have applied the proposed multi-agent system to a scalar static field in Fig 1. Figs. 1 and 2 show the simulated trajecto
environmental field illustrated as a contour map in Fig 1.sThi ries of agents with the gradient-based and RLS estimaters, r
static field was generated by the model in (3) with nine radial spectively. These trajectories show that agents withiblisted
basis functions, i.e.n = 9. The estimated field was updated control and learning algorithms successfully found pedks®
continuously and used for the coordination of each agent@s p  unknown field for both estimator cases. Notice also that soime
posed. Agents were launched at a set of randomly distributed agents would converge to the local minima of the field.

initial positions, which was fixed and used for all simulato To evaluate the convergence rate of the parameter estima-

for fair comparison. Table 1 shows the parameters used éor th tion for each agent, we compute the error ndfén(t)||, where

numerical evaluation. 8i(t) := 6i(t) — 6 for agenti, and plot]|8;(t)|| for all agents € I
Mobile agents with transmission radius of 0.5 were with respect to timé as in Figs. 3 and 4 for adaptive control with

launched from initial positions to seek the peaks of the omkn the gradient-based, and RLS estimators, respectivelyetthis
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Figure 2. TRAJECTORIES OF AGENTS WITH THE DISTRIBUTED
ADAPTIVE CONTROL BASED ON THE RLS ESTIMATOR. THE INITIAL
POSITIONS, THE ADDITIONAL SAMPLING POSITIONS, AND THE FI-
NAL POSITIONS ARE MARKED BY CIRCLES (0), STARS (), AND
SQUARES (L), RESPECTIVELY.

Figure 3. THE ERROR NORM ||6) (T)|| OF AGENT | WR.T. TIME T
FOR AGENTS WITH THE ADAPTIVE CONTROL WITH THE GRADIENT-
BASED ESTIMATOR.

distributed control and learning algorithms, there aréedint
groups of agents formed to share measurements locally.eTher
fore, the convergence rate of each agent depends on thed initi
configuration of the multi-agent system as shown in Figs.® an
4,

7 Conclusions

In this paper, we considered a deterministic adaptive obntr
framework to design and analyze a class of multi-agent syste
that locate peaks of unknown static fields of interest. Egemt
was driven by swarming and gradient ascent efforts basetson i

120 140 160

180

0 20 40 60 80 100 200

Figure 4. THE ERROR NORM ||6) (T)|| OF AGENT | WR.T. TIME T
FOR AGENTS WITH THE ADAPTIVE CONTROL WITH THE RLS ESTI-
MATOR.

own recursively estimated field via locally collected meaasu
ments. The convergence properties of the proposed mugtitag
systems were analyzed. A sampling scheme to help the con-
vergence was provided. The simulation study confirmed with
the convergence analysis of the proposed algorithms. Tthesfu
work is to consider the stochastic version of this problekimig

into account the measurement noise.
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