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Background

m mobile robotic sensors in environmental monitoring
m statistically model physical phenomena
m cheap sensor networks are prone to localization uncertainty

m The significant computational complexity due to the growing number
of observations
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Objectives

m predicting a spatio-temporal random field
m using sequential noisy observation
m incorporating the effects of localization uncertainty in the prediction
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Introduction

Uncertain localization
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The first column is under the true sampling positions. Second and third columns

are under the noisy sampling positions with 31 = 0.11 and X5 = 0.41 noise

covariance matrices, respectively.
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Preliminary

Sensor network

The measurement model is given by
yi=y(gh) = 2(¢) + e vi=1,.-- | N

qc is uncertain and determined by a prior probability distribution 7(g.).

7(q.) could be the output of a common localization algorithm such as Kalman
filter, SLAM, and etc.
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Preliminary

Gaussian process regression

The posterior distribution for z € R™ given true positions, is
zlqe, y ~ N(p, 2).

The predictive mean p € R™ and covariance matrix ¥ € R™ ™ can by
obtained by

p=A+KI'Cly—-)), L=%-KI'C'K,
where the covariance matrices are defined as :

K := Cov(y,z) € RVX" O = Cov(y,y) € RNV, 5 := Cov(z,2) €
Rnxn.

Then the predictive distribution of z given the measured locations is

(2l y) = / (2, ) (aliier y)da,
qES.
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Preliminary

Discretization

We discretize the compact domain S; := [0 Z42] X [0 Ymaz] into n spatial
sites, where n = hZimaz X hYmaz-

i

(a) h1 (b) h2
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Spatio-temporal field

Video

The value of the scalar field is modeled by
PAUSS )\,[f] + ny], Vie{l,---,n}, t € Zso.
The prior distribution of 7 is given by n; ~ N(0,%), and so we have
Zt ~ N(}\t, Eal) s

where Xy € R™*" is the covariance matrix, or Qy = 261 is the precision matrix.
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Preliminary

Mean function

Here the mean function )\,[f] : S X Zso — R is defined as

)\,[j} _ f(Sm)T,Bt,

where f(sm) is a known regression function and /3, is an unknown vector of
regression coefficients.

The time evolution of 3; € R? is modeled by

Biy1 = At + By,
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With precise localization

With precise localization

Assumptions:
A.1 The spatio-temporal random field is generated by the
proposed model in the previous slides.
A.2 The precision matrix (g is a given function of an uncertain
hyperparameter vector 6.
A.3 The noisy measurements {y;} are continuously collected by
robotic sensors in time t.

A.4 The sample positions {¢;} are measured precisely by
robotic sensors in time t.

A.5 The prior distribution of the hyperparameter vector 6 is
discrete with a support © = {#(1), ... (L)},

Problem 1: Consider the assumptions A.1-A.5. Our problem is to find the
predictive mean, and variance of the spatio-temporal field, using successive
noisy measurements, precise localization and uncertain hyperparameters.
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Solution to problem 1 (Algorithm 1)

Prediction:

F. A
pasomy s = ()
Q o Q9 _Q9F51
210, D1:¢—1 _FSTQ0 FEQ9F5+EEt|9’D1:t_1 )

® (18,1001, = Atls,_,|6,D,.,_, denotes the expectation of 3;

m X500, = ABs, 110,01, AT + B:W B[ denotes the associated
estimation error covariance matrix.

Correction:

_ —2 T
thlf),Du _thlele:t—l + o, FQth,,?

o —2-1 T
Hze|6,D1.e =Ha,]0,D1.01 T Oc th|07’D1:tFQt (yt - th/’bmtley’Dl:t—l)'
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With precise localization

Uncertain hyperparameters

The posterior distribution of the
hyperparameter vector 6:

7(0|D1.t) o w(ye|0, Di:t—1, qe)m(0|D1g—1),

The predictive mean and variance:
Hzy|Dyy = Z Mzt|9,D1;t7T(9|D1:t)a
0co

Eil?tl’Dl:t = Z [Eﬁtw,DLt + (/’L$t|97D1:t - /‘l’$t|D1:t)(/‘l’$t|07D1:t - /J%tlDl:t)T} ,’T(9|’D11t)‘
€O
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With uncertain localization

With uncertain localization

Assumptions:
A4 Fhesample-positions—{ar-are-measured-precisely-by

A.6 The prior distribution 7(q;) is discrete with a support
Qt) = {qt(k)|k € Z(t)}, which is given at time ¢ along with
the corresponding measurement y;.
Problem 2: Consider the assumptions A.1-A.3 and A.5-A.6. Our problem
is to find the predictive mean, and variance of the spatio-temporal field,

using successive noisy measurements, uncertain localization and uncertain
hyperparameters.
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Solution to problem 2 (Algorithm 2)

The posterior distribution of ¢;:
7 (a7 0P Rue) ocm(aff s [Ruo- 1) DLy, 0 )m(a™).

The predictive mean and variance:

Mz Ry = Z Koo (q§f2|R1:t> )
i€Z(1:t) )

Ewthl:t = Z |:Zl‘t|DY,)g + (thrDizz - ,U'zthlzt)
i€T(1:t)

- (R
'ua:t|D§12 Hap| Ry T\ qq.¢1 /%1t )
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With uncertain localization

Simulation results

Casel Case2

(e)

Prediction .

Prediciotn
variance

m Case 1: using Algorithm 1 with exact sampling positions

m Case 2: applying Algorithm 1 naively to the measured noisy sampling positions

m Case 3: applying Algorithm 2 to the uncertain sampling positions
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With uncertain localization

Simulation results
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(a) The RMS estimation error of 5; v.s. time and (b) the posterior probability of
the true hyperparameter vector v.s. time.
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Implementation

Implementation

temerature sens
Environmental sensors Connec"”l

Computer
Micro-controller
GPS/INS modules
Communication modules
Batteries
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Implementation

Experimental results

Temperature prediction

3 18 :
-2 zs  Video
- 176

Prediction variance

m The experimental environment is a 12 x 6 meters outdoor swimming pool.

m All possible sampling positions for each observation are represented with the
same color.

M. Jadaliha (MSU) DSCC 2012, Fort Lauderdale, FL October 17-19, 2012 19 /21



robotic-boat.mp4
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Conclusion

Conclusion

m We have tackled a problem of predicting a spatio-temporal field using
successive noisy measurements, uncertain hyperparameters, and uncertain
localization.

m We developed the spatio-temporal field of interest using a GMRF and
designed sequential prediction algorithms for computing the exact and
approximated predictive inference from a Bayesian point of view.

m The most important contribution is that the computation times for
Algorithm 1 and Algorithm 2 do not grow as the number of measurements
increases.
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