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Introduction

Background

mobile robotic sensors in environmental monitoring

statistically model physical phenomena

cheap sensor networks are prone to localization uncertainty

The significant computational complexity due to the growing number
of observations
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Introduction

Objectives

predicting a spatio-temporal random field

using sequential noisy observation

incorporating the effects of localization uncertainty in the prediction
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Introduction

Uncertain localization
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The first column is under the true sampling positions. Second and third columns
are under the noisy sampling positions with Σ1 = 0.1I and Σ2 = 0.4I noise
covariance matrices, respectively.
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Preliminary

Sensor network

The measurement model is given by

y[i] := y(q[i]
c ) = z(q[i]

c ) + ε[i],∀i = 1, · · · , N

qc is uncertain and determined by a prior probability distribution π(qc).

π(qc) could be the output of a common localization algorithm such as Kalman
filter, SLAM, and etc.
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Preliminary

Gaussian process regression
The posterior distribution for z ∈ Rn given true positions, is

z|qc, y ∼ N (µ,Σ).

The predictive mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n can by
obtained by

µ = λ+KTC−1(y − λ), Σ = Σ0 −KTC−1K,

where the covariance matrices are defined as :
K := Cov(y, z) ∈ RN×n, C := Cov(y, y) ∈ RN×N , Σ0 := Cov(z, z) ∈
Rn×n.

Then the predictive distribution of z given the measured locations is

π(z|q̃c, y) =

∫
q∈Sc

π(z|q, y)π(q|q̃c, y)dq,
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Preliminary

Discretization

We discretize the compact domain Sc := [0 xmax]× [0 ymax] into n spatial
sites, where n = hxmax × hymax.

(a) h1 (b) h2
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Preliminary

Spatio-temporal field

Video

The value of the scalar field is modeled by

zt
[i] = λ

[i]
t + η

[i]
t , ∀i ∈ {1, · · · , n}, t ∈ Z>0.

The prior distribution of ηt is given by ηt ∼ N (0,Σ0), and so we have

zt ∼ N
(
λt,Σ

−1
0

)
,

where Σ0 ∈ Rn×n is the covariance matrix, or Qθ = Σ−1
0 is the precision matrix.
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Preliminary

Mean function

Here the mean function λ
[i]
t : S × Z>0 → R is defined as

λ
[i]
t = f(s[i])Tβt,

where f(s[i]) is a known regression function and βt is an unknown vector of
regression coefficients.

The time evolution of βt ∈ Rp is modeled by

βt+1 = Atβt +Btωt,
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With precise localization

With precise localization

Assumptions:

A.1 The spatio-temporal random field is generated by the
proposed model in the previous slides.

A.2 The precision matrix Qθ is a given function of an uncertain
hyperparameter vector θ.

A.3 The noisy measurements {yt} are continuously collected by
robotic sensors in time t.

A.4 The sample positions {qt} are measured precisely by
robotic sensors in time t.

A.5 The prior distribution of the hyperparameter vector θ is
discrete with a support Θ = {θ(1), · · · , θ(L)}.

Problem 1: Consider the assumptions A.1-A.5. Our problem is to find the
predictive mean, and variance of the spatio-temporal field, using successive
noisy measurements, precise localization and uncertain hyperparameters.
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With precise localization

Solution to problem 1 (Algorithm 1)

Prediction:

µxt|θ,D1:t−1
=

(
Fsµβt|θ,D1:t−1

µβt|θ,D1:t−1

)
,

Qxt|θ,D1:t−1
=

(
Qθ −QθFs

−FTs Qθ FTs QθFs + Σ−1
βt|θ,D1:t−1

)
,

µβt|θ,D1:t−1
= Atµβt−1|θ,D1:t−1

denotes the expectation of βt

Σβt|θ,D1:t−1
= AtΣβt−1|θ,D1:t−1

ATt +BtWBTt denotes the associated
estimation error covariance matrix.

Correction:

Qxt|θ,D1:t
=Qxt|θ,D1:t−1

+ σ−2
ε ΓqtΓ

T
qt ,

µxt|θ,D1:t
=µxt|θ,D1:t−1

+ σ−2
ε Q−1

xt|θ,D1:t
Γqt(yt − ΓTqtµxt|θ,D1:t−1

).

M. Jadaliha (MSU) DSCC 2012, Fort Lauderdale, FL October 17-19, 2012 12 / 21



With precise localization

Uncertain hyperparameters

The posterior distribution of the
hyperparameter vector θ:

π(θ|D1:t) ∝ π(yt|θ,D1:t−1, qt)π(θ|D1:t−1), p
ro
b
a
b
il
it
y

The predictive mean and variance:

µxt|D1:t
=
∑
θ∈Θ

µxt|θ,D1:t
π(θ|D1:t),

Σxt|D1:t
=
∑
θ∈Θ

[
Σxt|θ,D1:t

+ (µxt|θ,D1:t
− µxt|D1:t

)(µxt|θ,D1:t
− µxt|D1:t

)T
]
π(θ|D1:t).
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With uncertain localization

With uncertain localization

Assumptions:

A.4 The sample positions {qt} are measured precisely by
robotic sensors in time t.

A.6 The prior distribution π(qt) is discrete with a support

Ω(t) = {q(k)
t |k ∈ I(t)}, which is given at time t along with

the corresponding measurement yt.

Problem 2: Consider the assumptions A.1-A.3 and A.5-A.6. Our problem
is to find the predictive mean, and variance of the spatio-temporal field,
using successive noisy measurements, uncertain localization and uncertain
hyperparameters.
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With uncertain localization

Solution to problem 2 (Algorithm 2)

The posterior distribution of qt:

π
(
q

(n)
1:t−1, q

(k)
t |R1:t

)
∝π(q

(n)
1:t−1|R1:t−1)π(yt|D(n)

1:t−1, q
(k)
t )π(q

(k)
t ).

The predictive mean and variance:

µxt|R1:t
=

∑
i∈I(1:t)

µ
xt|D(i)

1:t
π
(
q

(i)
1:t|R1:t

)
,

Σxt|R1:t
=

∑
i∈I(1:t)

[
Σ
xt|D(i)

1:t
+
(
µ
xt|D(i)

1:t
− µxt|R1:t

)
(
µ
xt|D(i)

1:t
− µxt|R1:t

)T]
π
(
q

(i)
1:t|R1:t

)
,

M. Jadaliha (MSU) DSCC 2012, Fort Lauderdale, FL October 17-19, 2012 15 / 21



With uncertain localization

Simulation results
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Case 1: using Algorithm 1 with exact sampling positions

Case 2: applying Algorithm 1 naively to the measured noisy sampling positions

Case 3: applying Algorithm 2 to the uncertain sampling positions
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With uncertain localization

Simulation results
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time

(a) The RMS estimation error of βt v.s. time and (b) the posterior probability of
the true hyperparameter vector v.s. time.
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Implementation

Implementation

Environmental sensors

Computer

Micro-controller

GPS/INS modules

Communication modules

Batteries

wi�

micro controler

MTi-G

PC104

HDD
battry

motor driver

motor

temerature sensor

         connector
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Implementation

Experimental results
Temperature prediction
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Video

The experimental environment is a 12 x 6 meters outdoor swimming pool.

All possible sampling positions for each observation are represented with the
same color.
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Conclusion

Conclusion

We have tackled a problem of predicting a spatio-temporal field using
successive noisy measurements, uncertain hyperparameters, and uncertain
localization.

We developed the spatio-temporal field of interest using a GMRF and
designed sequential prediction algorithms for computing the exact and
approximated predictive inference from a Bayesian point of view.

The most important contribution is that the computation times for
Algorithm 1 and Algorithm 2 do not grow as the number of measurements
increases.
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