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Environmental Monitoring using Autonomous
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Experiments
Mahdi Jadaliha and Jongeun Choi, Member, IEEE

Abstract—This brief presents a practical solution to a problem
of monitoring an environmental process in a large region by a
small number of robotic sensors. Optimal sampling strategies
are developed, taking into account the quality of the estimated
environmental field and the lifetime of the robotic sensors. We
also present experimental results for monitoring a temperature
field of an outdoor swimming pool sampled by an autonomous
aquatic surface robot. Simulation and experimental results are
demonstrated to validate the proposed scheme.

I. INTRODUCTION

Mobile sensor networks can be greatly exploited to monitor
environmental variables such as temperature, pH, salinity,
toxins, and chemical plumes. Significant enhancements have
been made in the area of mobile sensor networks and their
applications to environmental sciences [1], [2], [3], [4], [5],
[6], [7], [8]. Decentralized environmental modeling by mobile
sensor networks was presented in [1] in which control laws
were developed for mobile sensors to maximize their sensory
information. Planning of continuous paths for mobile sensors
to reduce uncertainty in the long-term forecast was addressed
in [2]. The space-time Kalman filter was proposed in [9] and
utilized in [3] to model the environmental field and design
distributed swarm intelligence for robotic sensors. A tradeoff
between the amount of information contained in the measure-
ments and the energy costs of acquiring the measurements was
formulated in [8]. Successful implementation of optimal ocean
sampling by mobile sensor networks was reported in [6]. In
[7], networked unmanned autonomous aquatic surface vessels
for environmental monitoring were designed and tested.

In modeling a time-varying, environmental scalar field (or a
spatio-temporal process), a finite set of basis functions is often
used [1], [3], [4], [9] so that a scalar value µ(ν, t) at position
ν and time t can be represented by

µ(ν, t) =

nx∑
j=1

ψj(ν)xj(t) = ψT (ν)x(t), (1)

where {ψj(ν)} is a finite set of basis functions and x(t) is a
time-varying coefficient vector, which is modeled by a linear
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time-invariant (LTI) system driven by a stochastic input w1

dx(t)

dt
= Ax(t) + w1(t). (2)

In the absence of a good dynamical model of x(t), often an
integrator is chosen for each coefficient for the stochastic noise
input [8].

In contrast to [1], [3], [4], when a small number of mobile
sensing robots monitor a possibly unstable environmental pro-
cess in a large surveillance region, several important problems
arise. One of them is how to design a sampling strategy for
robotic sensors such that a good quality of the estimation is
always being maintained. On the other hand, the lifetime of the
robotic sensor network has to be maximized for this resource-
constrained scenario. Motivated by the aforementioned issues,
this brief presents a practical solution to the environmental
monitoring problem in a large region by a small number of
robotic sensors and its experimental validation.

The contributions of the brief are as follows. A Kalman
filter (KF) for the down-sampled environmental process has
been formulated with the motivation of dynamic coverage of
the surveillance region by a small number of robots in order
to use the cumulative measurements over a time period. We
formulated optimization problems for prediction algorithms to
improve the quality of the estimation of a time-varying scalar
field as well as the lifetime of a network of robotic mobile
sensors due to the mobility cost. Using the down-sampled
system with periodic sampling, we also provided a way to
solve the formulated problems off-line for the infinite horizon.
From the formulated optimization problem, we showed that
there is a trade-off between the quality of the estimation and
the lifetime of the robotic sensors due to the mobility cost.

This paper is organized as follows. In Section II, we
introduce a spatio-temporal process using a network of radial
basis functions whose coefficients follow a continuous-time
linear system. A down-sampled system is formulated for a
small number of robotic sensors in Section III. A KF of the
down-sampled system and conditions for the discrete algebraic
Riccati equation (DARE) have been discussed in Section IV.
Optimal sampling strategies have been developed in Section V.
Finally, in Section VI, we present experimental results for
monitoring a temperature field of an outdoor swimming pool
by an autonomous aquatic surface robot.

The notation throughout the paper is standard. Let R,R≥0,
and Z>0 denote, respectively, the sets of real numbers, non-
negative real numbers, and positive integers. The positive



2

definiteness (positive semi-definiteness, respectively) of a ma-
trix M is denoted by M � 0 (M � 0, respectively). E
denotes the expectation operator. Let ‖x‖ denote the standard
Euclidean norm (or 2-norm) of a vector x. A block diagonal
matrix whose diagonal entries are given by a set of matrices
(M1, · · · ,Mn) starting from the top left corner is denoted by
diag(M1, · · · ,Mn). For column vectors va ∈ Ra, vb ∈ Rb,
and vc ∈ Rc, col(va, vb, vc) :=

[
vTa vTb vTc

]T ∈ Ra+b+c
stacks all vectors to create one column vector. In ∈ Rn×n
denotes an n×n identity matrix. The square-root factorization
for a matrix O � 0 is defined by O = O1/2O1/2T . A matrix
will be called Schur if all of its eigenvalues lie strictly inside
the unit disk in the complex plane. Other notation will be
explained in due course.

II. DYNAMICAL ENVIRONMENTAL SCALAR FIELDS

Let Q ∈ R2 be the surveillance region of interest. Suppose
that the scalar field µ(ν, t) at position ν ∈ Q and time t ∈ R
is generated by a network of radial basis functions, which
is given by (1) and (2), where ψT (ν) ∈ R1×nx and x(t) ∈
Rnx×1.

The collection of Gaussian radial basis functions
{ψj(ν) | j = 1, · · · , nx} in ψT (ν) is given by

ψ1(ν) = 1,

ψj(ν) =
1

βj
exp

(
−‖ν − ξj‖2

σ2
j

)
, ∀j ∈ {2, · · · , nx},

(3)

where σj is the width of the Gaussian basis function and βj
is a normalizing constant. ψ1 is associated with a global state
while other basis functions are related with local states. The
center locations, i.e., {ξj} are assumed to be known or need
to be estimated a priori.

Modeling an environmental process (i.e., the coefficients) by
an LTI system as in (1) and (2) could be justified by linearizing
a nonlinear system around an operating point [1], [3], [9].

For the model in (1), the selection of the correct number
of basis functions is important. Using more radial basis
functions may provide better resolution. However, it demands
higher computational power and more modes for robots to
observe. More importantly, overfitting could happen with a
large number of basis functions.

The Akaike information criterion (AIC) can be used to
determine the optimal number of parameters a priori, correctly
avoiding overfitting [10]. Subset selection is another technique
that can improve generalization capability and avoid overfitting
[11].

We assume that the dynamics of the coefficient vector
x(t) ∈ Rnx can be modeled by a continuous-time LTI system
under a stochastic noise input. In particular, the linear system
of x(t) is modeled by (2), where w1(t) ∈ Rnx denotes
a continuous-time Gaussian white noise process with the
intensity Vu ∈ Rnx×nx . Note that the continuous-time LTI
system in (2) has been considered to take into account the
effect of the sampling time on the quality of the estimation
and the lifetime of the robotic sensors.

We assume that ny robotic sensors are distributed over Q.
Let qi(t) ∈ Q be the position of the i-th sensing agent at time

t ∈ R≥0. Each robotic sensor will sample a noise corrupted
scalar value of interest. Robotic sensors will sample the
process in (1) and (2) providing sampled-data measurements

y(tk) :=
[
ψT (q1(tk)), ψT (q2(tk)), · · · , ψT (qny

(tk))
]T

× x(tk) + w2(tk) ∈ Rny ,
(4)

where {qi(tk)|i = 1, · · · , ny} are the sampling positions at tk.
w2(tk) ∈ Rny denotes a discrete-time Gaussian white noise
process with the covariance matrix V2(tk) ∈ Rny×ny .

III. A DOWN-SAMPLED SYSTEM

Due to sampling with a small number of robots over a
large region, we estimate the field using a set of cumulatively
collected N ×ny measurements at every N -th sampling time.
To this end, we consider a down-sampled system with the
accumulated sampled-data measurements over a time period,
which is defined by

yi := col(y(Ni+ 1), y(Ni+ 2), · · · , y(Ni+N)) ∈ RNny ,

where i ∈ Z>0. In general, we may assume that the sampling
time intervals by robotic sensors hk := tk+1 − tk are not
uniform. Define the state transition matrix by Φ(k, j) :=

eA
∑k−1

l=j hl ,∀k ≥ j. Using the fact that

x(k +N) = Φ(k +N, k)x(k) +

k+N−1∑
j=k

Φ(k +N, j + 1)u(j),

y(k + `) = C(k + `)Φ(k + `, k)x(k)

+

k+`−1∑
j=k

C(k + `)Φ(k + `, j + 1)u(j) + w(k + `),

where CT (k) := [ψ(q1(tk)) · · ·ψ(qny (tk))]T , and u(k) is a
discrete-time Gaussian white noise process with the following
properties

E[u(k)] =0,

E[u(k)uT (l)] =δk,l

∫ hk

0

eAτVue
AT τdτ =: δk,lV1(k),

where δk,l is a Kronecker delta function given by δk,l = 1
if k = l, otherwise 0. The measurement noise is given by a
discrete-time Gaussian white noise process w(k) := w2(tk)
with

E[w(k)] = 0, E[w(k)wT (l)] = δk,lV2(k).

We obtain the down-sampled system with collective mea-
surements

xi+1 = Fixi +Giui, and yi = Hixi + vi, (5)

where vi = Diui+wi and other associated system parameters
are provided in (6) in terms of sampled dynamics of (2). Now
the processes ui and vi in (5) are vector-valued zero-mean
Gaussian white-noise processes with the following properties.

E
[
ui
vi

]
= 0, E

[
ui
vi

] [
uTj vTj

]
= δi,j

[
Qi Si
STi Ri

]
,
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xi : = x(Ni) ∈ Rnx ,

ui : = col(u(Ni), u(Ni + 1), · · · , u(Ni + N − 1)) ∈ RNnx ,

yi : = col(y(Ni + 1), y(Ni + 2), · · · , y(Ni + N)) ∈ RNny ,

Fi : = Φ(Ni + N,Ni) ∈ Rnx×nx ,

Gi : = [Φ(Ni + N,Ni + 1) Φ(Ni + N,Ni + 2) · · · Φ(Ni + N,Ni + N)] ∈ Rnx×Nnx ,

Hi : = col(C(Ni + 1)Φ(Ni + 1, Ni), C(Ni + 2)Φ(Ni + 2, Ni),

· · · , C(Ni + N)Φ(Ni + N,Ni)) ∈ RNny×nx ,

Di : =


C(Ni + 1) 0 0

C(Ni + 2)Φ(Ni + 2, Ni + 1) C(Ni + 2) 0
...

. . .
C(Ni + N)Φ(Ni + N,Ni + 1) C(Ni + N)

 ∈ RNny×Nnx ,

wi : = col(w(Ni + 1), w(Ni + 2), · · · , w(Ni + N)) ∈ RNny .

(6)

where the formulas for {Qi, Si, Ri} are given by

Qi = diag(V1(Ni), V1(Ni+ 1), ..., V1(Ni+N − 1)),

Si = QiD
T
i ,

Ri = DiQiD
T
i

+ diag(V2(Ni+ 1), V2(Ni+ 2), ..., V2(Ni+N)).

(7)

We take the standard assumption [12] on the initial state x0,
which is that x0 is jointly Gaussian with x0 ∼ N (x̄0,Π0),
and is uncorrelated with {ui} and {vi}.

IV. THE KALMAN FILTER

The optimal estimator for this down-sampled system in
(5) is the Kalman Filter (KF) [12]. First we introduce the
following standard notations. x̂i|j and ŷi|j are the optimal
estimations (or conditional expectations) of xi and yi given
by {y0, · · · , yj}. Let ei := yi − ŷi|i−1 be the innovation
process. Let x̃i|j := xi − x̂i|j be the estimation error. The
estimation error covariance is defined by Pi|j := E[x̃i|j x̃

T
i|j ].

The discrete-time KF iterations for (5) can be written in the
form of predictor updates as follows,

x̂i+1|i = Fix̂i|i−1 +Ki(yi −Hix̂i|i−1),

Pi+1|i = FiPi|i−1F
T
i +GiQiG

T
i −KiRe,iK

T
i ,

(8)

where Ki := (FiPi|i−1H
T
i + GiSi)R

−1
e,i , and Re,i := Ri +

HiPi|i−1H
T
i , and P0|−1 = Π0. Due to the sampled-data

measurements for the down-sampled system we have

x̂i|i−1 = E[x(Ni)|y(0), · · · , y(Ni)] =: x̂(Ni|Ni),
Pi|i−1 = E[x(Ni)− x̂(Ni|Ni)][x(Ni)− x̂(Ni|Ni)]T ,

(9)

Therefore, we use the KF predictor updates in (8) for the
down-sampled system to obtain the estimates of x(Ni) and the
estimation error covariance matrix based on the measurements
{y(0), y(1), · · · , y(Ni)} as shown in (9).

We assume that sensing robots are loitering around the
surveillance region over a time period of revolution, which is
equal to the period of the down-sampled model. Hence at the
end of this period, robots will have the new updated prediction
of the field. If we assume that the overall sampling sequence
of intervals [tk, tk+N ], k ∈ Z>0, is periodic over [0,∞), the
down-sampled system in (5) becomes an LTI system with the
system parameters of {F,G,H,Q, S,R}, where time-invariant

{S,R} are obtained by the fact that {w(k)} is cyclostationary
due to the periodic sampling strategy, i.e., V2(k) = V2(k+N).
In this case, the Riccati recursion from (8) can be written as

Pi+1|i = FPi|i−1F
T +GQGT − (FPi|i−1H

T +GS)

× (R+HPi|i−1H
T )−1(FPi|i−1H

T +GS)T .
(10)

The associated discrete algebraic Riccati equation (DARE) is
given by

P =FPFT +GQGT − (FPHT +GS)

× (R+HPHT )−1(FPHT +GS)T .
(11)

The associated Lyapunov equation is given by

FTp OFp −O +HT (R+HPHT )−1H = 0, (12)

where Fp := F − KH and K := (FPHT + GS)(R +
HPHT )−1.

It can be shown (Theorem E.5.1. in [12]) that {F,H} is
detectable and {F s, GQs1/2}, where F s := F − GSR−1H
and Qs := Q− SR−1ST , is controllable on the unit circle if
and only if the DARE in (11) has a stabilizing solution P for
which Fp := F −KH is stable and any such stabilizing solu-
tion is unique and positive-semi-definite. In addition, under the
same condition of a detectable pair {F,H} and a controllable
pair {F s, GQs1/2} on the unit circle, it can be also shown
(Theorem E.6.1. in [12]) that {F s, GQs1/2} is stabilizable
(i.e., controllable on and outside the unit circle) if and only
if the DARE has a unique positive-semi-definite solution,
which is given by the maximal (and stabilizing) solution. The
following sufficient convergence conditions (Theorem 14.7.1
in [12]) are useful to ensure that the covariance matrix Pi|i−1
of the Riccati recursion in (10) converges to the solution P of
the DARE in (11).

Consider the Riccati recursion in (10) with a detectable
pair {F,H} and a controllable pair {F s, GQs1/2} on the
unit circle. Let P denote the unique stabilizing solution of
the DARE in (11) and O � 0 be the unique solution of the
Lyapunov equation in (12). Then, if the initial condition Π0 is
a symmetric matrix satisfying I +O1/2T (Π0 − P )O1/2 � 0,
Pi|i−1 converges exponentially to P .

On the other hand, convergence with an indefinite Π0

requires {F,H} detectable and {F s, GQs1/2} stabilizable (see
Theorem 14.7.2 in [12]).
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Note that this convergence result holds even though F is
unstable as long as the sufficient convergence conditions are
satisfied. The sampling strategy of robotic sensors will be
designed taking into account the aforementioned conditions
for the DARE and its convergent solution.

V. OPTIMAL SAMPLING STRATEGIES

Let r = col(r1, · · · , rN ) ∈ R2nyN denote a sampling
position vector whose position entries are associated to the
sampling times tNi+1, · · · , tNi+N over a period. For sim-
plicity, we assume that the sampling time hk = h is fixed.
The sampling position vector r also serves as a collection of
waypoints which robotic agents track and take measurements
over a period. Note that the down-sampled system parameters
can be written as functions of r, i.e.,

{F,G,H(r), Q, S(r), R(r)}.

Let Ek and Lk(r) denote, respectively, the energy content
and the energy power needed to complete the sampling for a
period by the k-th robotic sensor. Then the lifetime of the k-th
robotic sensor is given by

Tk(r) =
Ek
Lk(r)

. (13)

In optimizing the sampling strategy, we consider mixed
optimization for minimizing two conflicting cost functions
such as the estimation error variances at target positions in
qtarget and another one for maximizing the lifetime of the
robotic sensor network. Here the set of target points is denoted
by qtarget := {qtargetj | j = 1, · · · , nT }. As a result, the
sampling strategy will minimize the estimation error variances
at target points and the movement cost simultaneously.

A. A Greedy Policy over a Finite Time Horizon

For a given set {hk = h|k ∈ Z>0} and hyperparameters
for the scalar field modeled in (1), we consider the following
greedy policy which minimizes the cost function during the
next finite time horizon.

r[i] = arg min
r∈DS

J i+1(r), (14)

where r[1], · · · r[i] are sampling position vectors for periods
1, · · · , i. DS is the set of all possible r in which {F,H(r)}
is detectable and {F s(r), GQ(r)s1/2} is stabilizable. The cost
function at iteration i+ 1 is given by

J i+1(r) = λJ i+1
1 (r) + (1− λ)J i+1

2 (r), (15)

where λ ∈ [0, 1] is the weight factor. J i+1
1 (r) is the estimation

performance cost function defined by the averaged estimation
error variances at target positions at period i + 1 using
observations up to period i+ 1. From (1) and (9), we obtain

J i+1
1 (r) =

1

nT

∑
ν∈qtarget

E
[
(µ(ν)− µ̂(ν))2

]
=

1

nT

∑
ν∈qtarget

ψT (ν)Pi+1|i(r)ψ(ν),

where nT is the number of target points in qtarget. Pi+1|i is
given by the Riccati recursion in (10) as a function of r and
Pi|i−1. J i+1

2 (r) denotes the traveling energy cost function of
the sensor network. Using (13), we choose the average of the
inverted lifetime over robotic sensors:

J i+1
2 (r) :=

1

ny

ny∑
k=1

1

Tk(r)
=

1

ny

ny∑
k=1

Lk(r)

Ek
. (16)

For a case where the energy power is proportional to the sum
of squares of the traveled distances, we have the following
cost function for a single robot.

J i+1
2 (r) := α

(
‖rN − r1‖2 +

∑N−1
k=1 ‖rk − rk+1‖2

Nh

)
, (17)

where Nh is the total sampling time for a period and α is an
appropriate constant. The gradient of the cost function can be
used to find a local minimum to the optimization problem in
(14) in each period.

B. Infinite Horizon Optimization

A mixed optimization problem for the infinite horizon can
be also formulated as follows.

ropt = arg min
r∈DS

J∞(r), (18)

where J∞(r) := λJ1(r) + (1 − λ)J2(r) and λ ∈ [0, 1] is
a weighting factor. J1(r) and J2(r) in (18) are defined as
follows.

J1(r) :=
1

nT

∑
ν∈qtarget

ψT (ν)P (r)ψ(ν),

where P (r) is the unique solution of the DARE in (11) for
given r. J2 can be defined similarly to (16). For a single
robotic sensor, we may use the same model for J2 as in (17).

J2(r) := α

(
‖rN − r1‖2 +

∑N−1
k=1 ‖rk − rk+1‖2

Nh

)
. (19)

The optimization problem in (18) can be solved using the
following gradient descent algorithm projected over DS.

r[j + 1] = ProjDS (r[j]− εj∇rJ∞(r[j])) , (20)

where ∇rJ∞(r[j]) denotes the gradient of J∞ at r[j], and εj
is the small step size to update r at iteration j. r[j + 1] is
the projection of (r[j]− εj∇rJ∞(r[j])) onto DS in order to
satisfy the conditions for the existence and uniqueness of the
solution to the DARE.

However, the computation of ∇rJ∞(r) requires the evalu-
ation of ∂P

∂r , where P is the unique solution of the DARE in
(11) for r ∈ DS. In what follows, we show a way to compute
it by solving a series of Lyapunov equations [13], [14].

Since r ∈ DS, the DARE has a unique positive-semi-
definite solution P , which is given by the maximal (and stabi-
lizing) solution. Since the stabilizing solution of the DARE is
analytic [13], P is an infinitely differentiable function of r at
any point for which the DARE admits a stabilizing solution.
It can be shown that we can implicitly differentiate the DARE
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TABLE I
ACHIEVED COST FUNCTION VALUES FOR DIFFERENT CASES

Case N h λ J1(celcius2) J−1
2 = T (hour)

1 36 5 0.3 0.43588 19.4892
2 36 5 0.5 0.30636 7.4157
3 36 5 0.7 0.27302 5.4634
4 36 10 0.5 0.37857 12.0648
5 36 2.5 0.5 0.29559 5.8864
6 48 5 0.5 0.29412 10.3252
7 24 5 0.5 0.4202 8.4984

with respect to the i-th entry of the vector r to obtain the
following Lyapunov equations for all i ∈ {1, · · · , 2nyN} [14]:

FpP
[i]FTp − P [i] +X +XT = 0, (21)

where the superscript [i] denotes the partial derivative with
respect to the i-th entry of r. The other parameters in (21) are
as follows.

Fp := F −KH,
K := (FPHT +GS)(R+HPHT )−1,

X := −FpP (HT )[i]KT −GS[i]KT +
1

2
KR[i]KT .

Since Fp is Schur (or stable), each Lyapunov equation can be
uniquely solved for P [i].

Therefore, ∇rJ∞(r) evaluated at r = r0 can be computed
by the following way:

1) Compute P from the DARE with r = r0.
2) Compute {P [i] | i = 1, · · · , 2nyN} by solving the Lya-

punov equations in (21).
3) Compute ∇rJ∞(r) in (20) using ∂P

∂r .

Numerical issues related to the computational solution of
the algebraic matrix Riccati equation are discussed in [15].
In particular, computing ∇rJ∞(r) according to the aforemen-
tioned steps has the following computational complexity. For a
fixed number of robots ny and a fixed number of target points
nT , the complexity of the first step is O(n3x) + O(n2xN) +
O(nxN

2) + O(N3), the complexity of the second step is
O(n3xN) +O(n2xN

3), and finally the complexity of third step
is O(n2xN). Note that this optimization is performed offline.

C. A Trade-off Between Cost Functions

In this section, we discuss some results from the optimiza-
tion presented in (18) using the method we proposed in (20)
and (21). Note that the optimization in (18) is nonconvex.
Hence, the suboptimal solution will be obtained via the
gradient algorithm in (20).

Suboptimal solutions are found under different parameters
such as λ (weighting factor), h (sampling time), and N
(number of samples) for a robotic sensor as seven cases shown
in Table I. We have used a model for J2 defined in (19) with
α = 2sec/(m2 · hour).

The estimation performance cost J1 and the energy cost
J2 in (18) are conflicting cost functions since robotic sensors
need to sample many different points to improve the quality
of the estimate, which requires a lot of traveling and energy
dissipation. As can be seen throughout cases 1-3, a trade-off
can be obtained between the conflicting cost functions J1 and

wi�

micro controler

IMU

PC104

HDD
battry

motor driver

motor

temerature sensor

         connector

(a)

Hot water outlets

(b)

Fig. 1. a) The developed robotic sensor. b) The experimental environment-
a 12× 6 meters outdoor swimming pool.

J2, e.g., the achieved value of J1 decreases while that of J2
increases as λ increases.

From the results of cases 2, 4, and 5, we see that if
the sampling time h decreases, the averaged estimation error
variance J1 decreases while the energy cost J2 increases. The
effect of different numbers of sampling points for a period is
shown via cases 2, 6, and 7.

VI. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present experimental results using a
single aquatic surface robot in an outdoor swimming pool
as shown in Fig. 1. We have built our own aquatic surface
robots equipped with various sensors for localization and water
quality monitoring. The robot is capable of monitoring the
aquatic variables in an autonomous manner while could be
remotely supervised by a central station as well.

In the experimental study, we have selected and identified
the system parameters based on a priori knowledge about the
spatio-temporal process and sensor noise characteristics. For
example, A has been chosen such that A = −diag(0, τ−1I18),
taking into account the time constant τ = 1000 sec. and
placing an eigenvalue at zero for x1(t) of x(t) in (3) to
maintain the average of the field. The system parameters for
the simulation and experimental results are selected as follows:
N = 36, nx = 19, β = col(1, · · · , 1) ∈ R19×1, σ =
col(∞, 2.5, · · · , 2.5) ∈ R19×1, h = 5, λ = 0.5, V2 = 0.5I36,
Vu = 10−3I19 and A = −10−3diag(0, I18). The initial value
Π0 = 2Inx×nx

and x0 = col(10, 0, · · · , 0) ∈ Rnx have been
chosen for Kalman filter initial conditions. In general, the
maximum likelihood estimation (MLE) using EM algorithms
can be used to estimate the unknown system parameters [16].
The center locations of radial basis functions in the 12m×6m
swimming pool are shown by pluses in Fig. 2-(a). The target
points in qtarget have been selected as the same as the center
locations of radial basis functions.

For a comparison purpose, we have simulated the tem-
perature field in the pool using the aforementioned system
parameters. For the simulated data, the estimated temperature
and the estimation error variance by our approach have been
shown, respectively, in Figs. 2-(b) and (c). From (1), the
estimation error variance at point q is E

[
(µ(q)− µ̂(q))2

]
=

ψT (q)Pi+1|i(r)ψ(q). The counter clockwise (CCW) trajectory
of simulated sampling points, which has been optimized by the
proposed approach, is shown in purple solid lines with white
dots for two sensor agents in Fig 2-(c). The trajectory for
both agents starts from three o’clock. The true field and the
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Fig. 2. (a) The simulated true temperature field. The purple pluses represent
the target points and also the centers of the radial basis functions. (b) The
estimated temperature field. (c) The estimation error variance field. The CCW
trajectory of the simulated sampling points is shown in purple solid lines with
white dots. The trajectories for both agents start from three o’clock. The axes
show coordinates along horizontal and vertical directions in meters.

estimated field match well as shown in Figs. 2-(a) and (b). It
is straightforward to see that the estimation error variance has
been decreased in areas near the latest sampling points along
the CCW sampling trajectory shown in Fig. 2-(c).

To validate our approach under an experimental setup, we
control the temperature field by turning the hot water pump
on and off. The hot water outlets are shown in Fig. 1-(b). We
turned on the hot water pump for a while. After that, the hot
water pump was turned off, and after 6 minutes, the robot
collected 36 measurements in a period. The first measurement
was taken at t = 0 sec. at a location shown as a white star
in Fig. 3-(b). The estimated temperature and its error variance
at t = 175 sec. are shown in Figs. 3-(a) and (b), respectively.
Sampling points and the robot trajectory in CCW are shown,
in white dots and purple solid lines in Fig. 3-(b).

The experimental setup was designed to evaluate the es-
timation performance of the proposed sampling strategy with
one mobile robot. As can be seen in Fig. 3, there are hot spots
at the left and right sides of the swimming pool. These hot
spots were the result of hot water flux injected by the two
hot water outlets at positions (1, 0) and (11, 0) in the lower-
left and lower-right corners of the swimming pool, which
met our expectation of high temperature around the hot water
outlets, as shown in Fig. 1-(b). In addition, the estimation error
variance is higher around the places where the mobile robot
did not collect samples.

Fig. 3. (a) The estimated temperature field (in Celsius), (b) and its estimation
error variance field (in Celsius2) at time t = 175 sec. The first measurement
point (shown with a white star) was measured in t = 0sec. The sampling
points and the trajectory in CCW are shown with white dots and purple solid
lines, respectively. The axes show coordinates along horizontal and vertical
directions in meters.

VII. CONCLUSION

In this brief, we developed a practical solution to an
environmental monitoring problem in a large region by a
small number of robotic sensors. Optimal sampling strategies
were developed to maximize the estimation quality and the
lifetime of the robotic sensors. A trade-off between these
two conflicting objectives has been presented. In addition, the
effects of parameters such as the number of measurements,
weighting factors, and the sampling time have been reviewed.
Finally, the simulation and experimental results have been
provided by our aquatic surface robot in an outdoor swimming
pool with controlled hot water flux. Experimental results were
demonstrated to validate the proposed scheme.

Future work will be to take into account localization errors
for the estimation, and implement the experimental setup for
multiple robots.
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