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Abstract— In this paper, we propose distributed Gaussian
process regression for resource-constrained mobile sensor net-
works under localization uncertainty. The proposed distributed
algorithm, which combines Jacobi over-relaxation (JOR) and
discrete-time average consensus (DAC), can effectively handle
localization error as well as limited communication range
and computation capabilities of mobile sensor networks. The
performance of the proposed method is verified in numeri-
cal simulations against the centralized maximum a posteriori
solution and the quick-and-dirty solution. We show that the
proposed method outperforms the quick-and-dirty solution and
achieves the accuracy which is close to the centralized solution.

I. INTRODUCTION

Recent dramatic climatic changes, due to increasing green-
house gas concentrations, stratospheric ozone depletion, and
tropical deforestation, are great threats to the environment
and our society [1]. The advances in embedded processors
and mobile sensor networks (MSN) technologies allow a
number of important and successful applications in envi-
ronmental monitoring and prediction such as monitoring
complex interactions in wildlife habitats and disaster man-
agement of harmful algal blooms in water bodies [2], [3].

Recently, it has been demonstrated that a stochastic pro-
cess, such as a Gaussian process, is very efficient for mod-
eling spatio-temporal phenomena of changing environments.
Mysorewala et al. [4] combined a neural network and an
extended Kalman filter (EKF) with greedy search heuristics
for developing a distributed multi-scale sampling strategy
for environmental monitoring. The use of EKF allowed the
method to handle localization and measurement uncertain-
ties. However, the proposed method is based on a parametric
model and it is difficult to apply the method directly to highly
complex time-varying real-world situations.

In this paper, we develop a distributed estimation method
which is robust against localization and measurement errors
using Gaussian process regression (GPR) [5], a nonparamet-
ric Bayesian regression method. GPR can provide both an
estimate for an unseen input and the uncertainty (variance)
about the estimate. A capability of assessing the uncertainty
about its prediction is an attractive feature of GPR. Hence,
GPR has been adapted to make statistical inferences on
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geostatistical and environmental data and applied to robot
navigation [6]–[8] and sensor placement [9], [10]. However,
GPR suffers from two major drawbacks: heavy computa-
tional cost and the difficulty of handling localization errors.

The computational complexity of the original form of
GPR is O(n3), where n is the number of measurements,
for the computation of an inverse of the covariance matrix.
A number of approximation schemes have been proposed
to reduce the computational complexity of GPR, including
[11]–[15]. In particular, Xu et al. [16] proposed Gaussian
process regression based on truncated observations for mo-
bile sensor networks with limited memory and computational
power.

For environmental monitoring, better mapping of the en-
vironment is possible when accurate sensing locations are
available. However, there can be many situations where
sensing locations cannot be measured accurately, e.g., GPS
denied areas. In addition, there could be significant local-
ization errors from inexpensive GPS receivers. A number of
localization algorithms have been proposed to address this
issue, including [17]–[20]. Oguz-Ekim et al. [19] iteratively
maximized likelihoods of position estimates given measure-
ments and Karlsson et al. [20] applied particle filtering for
surface and underwater navigation as a supplement to the
GPS.

A mobile sensor network consists of a number of resource-
constrained agents with limited processing power, commu-
nication bandwidth, and battery capacity, to name a few.
These limitations play an important role in designing an
application using mobile sensor networks [2]. In order to
handle these physical constraints and take a full capability as
a team, it is important to process information in a distributed
manner [2], [21]–[23]. For example, in [23], a distributed
learning and control algorithm is developed for mobile sensor
networks for estimating an unknown field of interest from
noisy measurements and coordinating multiple agents to
discover peaks of the unknown field. In [24], a distributed
GPR algorithm is proposed using a compactly supported
covariance functions. However, in both cases, it is assumed
that there is no localization error.

Jadaliha et al. [25] incorporated the localization uncer-
tainty into the Gaussian process regression framework. Since
the proposed predictive mean and variance estimators have
no closed-form solutions, they suggested two approximation
schemes, Laplace approximation and Monte Carlo impor-
tance sampling. They also proposed a simple Laplace approx-
imation method which uses the maximum a posteriori (MAP)
estimator of noisy position reports. In this paper, we extend
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[25] by developing a distributed version of GPR, which can
handle both localization and measurement uncertainties, such
that it can be suitable for resource-constrained mobile sensor
networks.

The remainder of this paper is organized as follows.
In Section II, Gaussian processes are briefly described. In
Section III and Section IV, we provide a mathematical
formulation which incorporates both localization and mea-
surement errors into a single Bayesian framework. We also
introduce an approximation algorithm for computing the
predictive mean estimator (PME) and predictive variance
estimator (PVE). In Section V, we propose a distributed
Gaussian process algorithm for computing PME and PVE.
The performance of the proposed prediction algorithm is
extensively evaluated in Section VI.

II. GAUSSIAN PROCESS REGRESSION

A Gaussian process (GP) is completely specified by its
mean function and covariance function and it is formally
defined as a collection of random variables, any finite number
of which have a joint Gaussian distribution [5]. Let us denote
the mean function by m(x) and the covariance function
by k(x, x′) for a Gaussian process f(x) describing an
environmental parameter. f(x) can be represented as:

f(x) ∼ GP(m(x), k(x, x′)). (1)

Suppose that x ∈ Rnx is an input and y ∈ R is an
output (or a target), such that y = f(x) + w, where w is
a white Gaussian noise. When the target y is continuous
(respectively, discrete), we have a regression (respectively,
classification) problem. In this paper, we assume y takes
a continuous value. Suppose that there are n observations,
{(xi, yi)|i = 1, · · · , n}. Given observations, Gaussian pro-
cess regression (GPR) can predict an output y? for a new
input vector x?.

For notational simplicity, we assume a zero-mean Gaus-
sian process. A Gaussian process with a nonzero mean can
be treated by a change of variables. Even without a change
of variables, this is not a drastic limitation, since the mean
of the posterior process is not confined to zero [5]. There
are a number of choices for the covariance function and the
widely used covariance function is the squared exponential
(SE) kernel:

k(x, x′) = σ2
f exp

(
−||x− x

′||2

2σ2
x

)
, (2)

where σ2
f and σ2

x are hyperparameters which can be esti-
mated by maximizing the log-likelihood. The log-likelihood
can be computed as follows.

logP (y|x, σw) =
1

2
yT (K + σ2

wI)−1y (3)

− 1

2
log |K + σ2

wI| −
n

2
log 2π.

Assuming that yi = f(xi) + wi and wi
i.i.d.∼ N (0, σ2

w),
the covariance between yi and yj can be computed as

cov(y(p), y(q)) = k(x(p), x(q)) + σ2
wδpq (4)

and we represent the covariance in the following matrix form

cov(y) = K(x,x) + σ2
wI, (5)

where y = (y1, . . . , yn)T , x = (xT1 , . . . , x
T
n )T , and K(x,x)

is the covariance matrix computed from n data points.
Let D = {(xi, yi) | i = 1, · · · , n} be a set of input-output

pairs. The conditional distribution of y? at a new input x?
given data becomes

y?|D ∼ N(µ?(x?|D), σ2
?(x?|D)) (6)

where

µ?(x?|D) = k(x?,x)T (K(x,x) + σ2
wI)−1y (7)

and

σ2
?(x?|D) = σ2

f − k(x?,x)T (K(x,x) + σ2
wI)−1k(x?,x).

(8)
Here, k(x?,x) ∈ Rn is a covariance vector between y and
y?.

Note that (7) and (8) require an inversion of a covariance
matrix, which has complexity of O(n3). Considering limited
capabilities of mobile sensor networks, the computation
can be prohibitive when the number of measurements be-
comes large. A number of approximation methods have
been proposed to address this issue [11]–[15]. A distributed
algorithm, such as the one described in Section V, can be
considered as another solution to reduce the computational
demand.

III. GPR UNDER LOCALIZATION UNCERTAINTY

In a realistic situation, acquiring samples {xi, yi} with
exact localization for xi is often impossible. As Gaussian
processes incorporate a measurement noise naturally, it is
desirable to incorporate a localization noise into Gaussian
processes. In [25], Gaussian process regression was reformu-
lated to incorporate noisy input data x̄, where x̄i = xi + vi,
x̄ = {x̄1, . . . , x̄n}, and vi is a zero-mean white Gaussian
noise with variance σ2

v . Let D′ = {(x̄i, ȳi) | i = 1, . . . , n},
where ȳi = f(x̄i) + wi. Under this new formulation, the
following predictive mean estimator (PME) and predictive
variance estimator (PVE) are derived in [25].

E(y?|D′) =

∫
X
µ?(x?|D′)p(ȳ|x)p(x|ȳ)dx∫

X
p(ȳ|x)p(x|ȳ)dx

(9)

and

var(y?|D′) =

∫
X

(σ2
?(x?|D′) + µ2

?(x?|D′))p(ȳ|x)p(x|ȳ)dx∫
X
p(ȳ|x)p(x|ȳ)dx

−E2(y?|D′), (10)

where µ?(x?|D′) and σ2
?(x?|D′) are given by (7) and (8).

This new formulation of Gaussian process regression
incorporates both localization and observation noises in a
Bayesian framework. However, there are no closed-form
solutions for the PME and PVE given in (9) and (10), respec-
tively. In [25], three approaches are proposed to approximate
the PME and PVE and they are the fully-exponential Laplace
approximation method [26]–[29], Monte Carlo importance
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sampling, and a simple Laplace approximation method. The
simple Laplace approximation makes predictions based on
the mode of the posterior distribution of the position of an
input, i.e., the maximum a posteriori (MAP) estimator of the
input.

IV. SIMPLE LAPLACE APPROXIMATION METHOD

The simple Laplace approximation method for estimating
(9) and (10) is based on the maximum a posteriori (MAP)
estimation and requires less computation compared to the
fully-exponential Laplace approximation method and Monte
Carlo importance sampling [25]. The simple Laplace approx-
imation method will be called MAP-GP in the remainder of
this paper. The following proposition from [25] demonstrates
that MAP-GP can provide good estimates.

Proposition 1: Let x̂ be an asymptotic mode of order
O(n−1) for −h(x), such that

x̂ = arg max
x∈X

p(ȳ|x)p(x|x̄) (11)

h(x) = − 1

n
log(p(ȳ|x)p(x|x̄)). (12)

Assume that {h, x̂} satisfies the regularity conditions de-
scribed in [25]. Consider the following approximations for
E(y?|D) and var(y?|D)

Ê(y?|D) = kT (x?, x̂)(K(x̂, x̂) + σ2
wI)−1ȳ, (13)

v̂ar(y?|D) = σ2
f − kT (x?, x̂)(K(x̂, x̂) + σ2

wI)−1k(x?, x̂),
(14)

where K(x̂, x̂) ∈ Rn×n and k(x?, x̂) ∈ Rn are covariance
matrices obtained using x̂. Then, we have the following
orders of errors.

Ê(y?|D) = E(y?|D) +O(n−1)

v̂ar(y?|D) = var(y?|D) +O(n−1).
Remark 1: Note that the MAP-GP predictive mean and

variance in (13) and (14) take the same form as the original
predictive mean and variance, cf. (7) and (8), but the MAP
estimator x̂ from (11) is used.

V. DISTRIBUTED GPR ALGORITHM

In this section, we introduce a distributed algorithm for
an individual agent (sensor) to estimate an environmental
parameter of the surveillance region S only by exchanging
local information within r-disk neighbors. Consider a mobile
sensor network consisting of q mobile sensing agents dis-
tributed in S. This distributed approach can be implemented
for a class of kernel functions K(·, ·) that have compact
supports. The following kernel function is considered in the
development of a distributed algorithm.

k(x, x′) = σ2
fλ

(
||x− x′||

r

)
, (15)

where

λ(h) =

{
(1− h) cos(ph) + 1

p sin(ph), if h ≤ 1,

0, otherwise.

Notice that the kernel function K in (15) has a compact
support, i.e., Kij = K(x(i), x(j)) is non-zero if and only if
rij = ||x(i) − x(j)|| is less than the support r and, similarly,
ki = K(x(i), x?) is non-zero if and only if di? = ||xi−x?|| is
less than the support r. Consider a case in which each agent
in a sensor network can only communicate with other agents
within a limited communication range of R. In addition, we
assume that there exists no central station.

The index of the robotic sensors is denoted by I =
{1, · · · , q}. The position of agent i is denoted by x(i). Agent
i can only communicate with its neighbors in a limited range
of R. The adjacency matrix Q indicates whether two agents
are neighbors or not. If the element in the i-th row and j-
th column of Q, i.e., Qij = 1, then agent i and agent j
are neighbors and they have a communication link, and if
Qij = 0, then they are not neighbors.

Qij =

{
1, ||x(i) − x(j)|| ≤ R and i 6= j
0, otherwise,

where R is the communication range between neighbors.
The assumptions made for the resource-constrained mobile

sensor networks are listed as follows.
Assumption 1: The radius r of the support of the kernel

function (15) satisfies that 0 < r < R.
Assumption 2: Agent i can only communicate with neigh-

bors in N(i) = {j ∈ I | Qij = 1}.
These assumptions indicate that the communication range

must be longer than the measurement radius of each agent.
If these assumptions are not held, the multi-agent system
cannot reach a consensus due to an inability to make com-
munication with each other.

As a result of the specified covariance matrix in (15) and
Assumption 1, agent i knows the i-th row of K, i.e., [K](i),
where Kij 6= 0 if and only if j ∈ N(i).

A. Jacobi Over-Relaxation Method

Jacobi over-relaxation (JOR) is a method for solving Ax =
b, where A ∈ Rq×q , and x, b ∈ Rq [30]. This method
assumes that agent i knows the [A](i) ∈ RN and bi, and
aij = (A)ij = 0 if agent i and agent j are not neighbors
which goes along with Assumption 2. The i-th element of
solution x = A−1b can be obtained by the following iterative
steps:

x
(k+1)
i = (1− h)x

(k)
i +

h

aii

bi −∑
j∈Ni

aijx
(k)
j

 , (16)

where h is a constant controlling the speed of convergence.
The convergence properties of the iterative JOR algorithm

with respect to eigenvalues of the matrix A is specified in
[30]. Moreover, Udwadia et al. [31] proved that if h < 2

q ,
the convergence of the JOR algorithm to the solution x =
A−1b is guaranteed from any initial point xinit, where A is
a symmetric, positive-definite matrix.

Remark 2: Note that, the solution of the JOR method
approaches to the solution x = A−1b without requiring the
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computation of an inverse of A. As shown in Section II,
a drawback of Gaussian process regression is O(N3) com-
plexity of calculating (K(x,x) + σ2

wI)−1. This complexity
can be relieved if the JOR method is applied in a distributed
manner.

B. Discrete-Time Average Consensus Method

The discrete-time average consensus (DAC) method is
used to compute the arithmetic mean of elements of a vector
[32]. Let

c =


c1
c2
...
cq

 ∈ Rq. (17)

If the graph is connected, and agent i knows the i-
th element of vector c, the arithmetic mean of c can be
computed by iterating

x
(k+1)
i = x

(k)
i + ε

∑
j∈Ni

aij(x
(k)
j − x(k)i ), (18)

with an initial condition x0i = ci, where aij = 1 if and only
if agent i and agent j are connected. It is proven that if ε
satisfies

0 < ε <
1

maxi(
∑

j 6=i aij)
, (19)

then the DAC algorithm converges to the solution [33].
After the convergence, every node in the network con-

verges to the arithmetic mean of vector c, i.e. 1
q

∑q
i=1 ci.

C. Distributed Maximum a Posteriori Mode Estimator

In order to find the asymptotic mode x̂ in a distributed
manner, the Jacobi over-relaxation method introduced in
Section V-A is used. The overall algorithm is summarized in
Algorithm 1.

Algorithm 1 Distributed Algorithm for Finding X̂

Given Initial position x̄, corrupted measurement ȳ and ε
satisfying (19).
begin ∀i x̂(0)i = x̄i, Γ

(0)
i = 0, B

(0)
i = 0 ∈ Rn×n

repeat
repeat

1. Update Γi using (22).
2. Update Bi using (23).

until Γi and Bi converges.
1. Compute ∂h

∂x(i) using (25).
2. Update x̂i using (26).

until x̂i converges.

Agent i only knows the i-th row and column of K and
∂K/∂x(i). In addition, note that for ∂K/∂x(i), the elements
out of i-th row and column are zeros. Define Γ and Bl as
follows:

Γ = (K(x,x) + σ2
wI)−1ȳ (20)

Bl =
1

2
(K(x,x) + σ2

wI)−1
∂K(x,x)

∂x(l)
. (21)

Agent i knows i-th row of (K(x,x) + σ2
wI) and i-th

element of ȳ. So Γ(i), the i-th element of Γ, can be computed
by applying the JOR method over (K(x,x)+σ2

wI)−1ȳ based
on the following recursion:

Γ(i)(k + 1) = (1− α)Γ(i)(k) +
α

σ2
f + σ2

w

×

ȳ(i) − ∑
j∈N(i)

k(x̂(i), x̂(j))Γ(j)(k)

 .(22)

Similarly, agent i knows [(K + σ2
wI)](i), the i-th row of

(K + σ2
wI), and the i-th element of ȳ. So Γ(i), the i-th

element of Γ, can be computed by applying the JOR method.
However, agent i needs to receive ∂K

∂x(l) from agent l if they
are connected or use zero instead if they are not connected.
In other words, agent i will{

get
[

∂K
∂x(l)

]
(i)

from agent l if i ∈ N(l)[
∂K
∂x(l)

]
(i)

= 0 l 6= i and i /∈ N(l)

and

[Bl(k + 1)](i) = (1− α) [Bl(k)](i) +
α

σ2
f + σ2

w

×[ ∂K
∂x(l)

]
(i)

∣∣∣∣
x=x̂

−
∑

j∈N(i)

k(x̂(i), x̂(j)) [Bl(k)](j)

 (23)

for k ∈ Z≥0 and i ∈ 1, 2, . . . , q, where α ∈ (0, 2λmin(K +
σ2
wI)). At the end of JOR iterations, agent i knows Γ(i) and

[Bl](i).

Proposition 2: Given B
(j)
i , the j-th diagonal element of

Bi, ∂h
∂x(i) calculated for agent i is

∂h

∂x(i)
=
x(i) − x̄(i)

nσ2
v

(24)

− 1

n

∑
j∈N(i)

(
Γ(j) ∂k(x(j), x(i))

∂x(i)
Γ(i) −B(j)

i

)
.

Proof: h given by (12) can be expressed as

h =
d

2
log(2pσ2

v) +

∑n
i=1(x(i) − x̄(i))2

2mσ2
v

+
1

2
log(2p)

+
1

2n
log |K + σ2

wI|+
1

2m
ȳT (K + σ2

wI)ȳ.

Now take a derivative respect to x(i) to get

∂h

∂x(i)
=
x(i) − x̄(i)

nσ2
v

+
1

2n
tr

(
∂K

∂x(i)
(K + σ2

wI)−1
)

+
1

2n
ȳT (K + σ2

wI)−1
∂K

∂x(i)
(K + σ2

wI)−1ȳ.

Using (20) and (21), we get

∂h

∂x(i)
=
x(i) − x̄(i)

nσ2
v

+
1

n
tr(BT

i )− 1

2n
ΓT ∂K

∂x(i)
Γ. (25)

It is known that ∂K
∂x(i) is a sparse matrix with only non-

zero elements on the i-th row and column for the neighbors

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 52nd IEEE Conference on Decision and Control .
Received March 6, 2013.



of i. Rewriting the above equation in the summation form
leads to (24).

Finally using the recursive gradient method given by (26),
agents can update their modes in a distributed manner, where
x̄(i) can be used as an initial condition.

x̂(i)(t+ 1) = x̂(i)(t) + γ
∂h

∂x((i)

∣∣∣∣
x(j)=x̂(j)(t),j∈N(i)

. (26)

Algorithm 2 Distributed Algorithm for Sequential Field Predic-
tion

Given Mode x̂, corrupted measurement ȳ, unmeasured
position x? and converged Γ.
begin θ

(0)
i = k(x?, x̂i)Γ

(i)

repeat
1. Update θi using (27).

until θi converges.
output Ê[y?|D] = q × θi

D. Distributed posterior mean and variance estimators

Let us consider the first-order approximation of the PME
estimator in (13). The elements of the covariance matrices
k(x̂(i), x?) and k(x̂(i), x̂(j)) can be calculated using (15) and
the converged asymptotic mode x̂ of −h can be found.

Proposition 3: If a sensor network is connected, every
agent can compute Ê(y?|D) with the DAC method by
exchanging only local information using:

θi(k + 1) = θi(k) + ε
∑

j∈N(i)

(θj(k)− θi(k)), (27)

where θi(0) = k(i)Γ(i).
Proof: By Proposition 1 and (20), PME in (13) can be

represented as follows:

Ê(y?|D) = kT (x?, x̂)(K(x̂, x̂) + σ2
wI)−1ȳ

= kT (x?, x̂)Γ. (28)

The solution of (28) can be solved using DAC since (28)
can be matched to (17). Recall that (28) is a scalar value
and can be represented as

∑q
i=1 k

T (x?, x̂
(i))Γ(i) and the i-

th agent knows both kT (x?, x̂
(i)) and Γ(i).

From Section V-B, we know that θi converges to Ê[y?|D]
when 0 < ε < 1

maxi
∑

i6=j Qij
and each agent can easily

compute Ê[y?|D] by q × θi.
The predictive variance can be approximated similarly

with

v̂ar(y?|D) = σ2
f − kT (K + σ2

wI)−1k. (29)

First, suppose that

Φ = (K(x̂, x̂) + σ2
wI)−1k(x?, x̂). (30)

Agent i can calculate the i-th element of (30) by the
following recursion (31).

Φ(i)(k + 1) = (1− α)Φ(i)(k) +
α

σ2
f + σ2

w

(31)

×

ȳ(i) − ∑
j∈N(i)

k(x̂(i), x̂(j))Φ(j)(k)

 .

Once JOR converges, the error variance can be computed
using following recursion based on the DAC method

θi(k+1) = θi(k)+ε
∑

j∈N(i)

(θj(k)−θi(k)), θi(0) = k(i)Γ(i),

(32)
where

θi(0) = kT (x?, x̂
(i))Φ(i). (33)

Without loss of generality, the iterative DAC solution in (27)
and (32) can be extended to vector formulation, where θi ∈
Rk.

Remark 3: The proposed distributed posterior mean and
variance estimators given by (28) and (29) are different
with the naive approach given by (7) and (8). In the naive
approach we completely neglect the effect of localization
uncertainty. In the proposed distributed approach, we first
find a better estimate x̂ for the uncertain location x and then
use instead of x for estimating the field.

VI. SIMULATION RESULTS

In this section, we perform a number of numerical simula-
tions to validate the prediction performance of the proposed
distributed GPR algorithm. For simulation, we have ran-
domly generated ten reference fields from a Gaussian process
with a covariance function given in (15). We then compare
the predicted fields using three different algorithms against
the reference field. Three algorithms used in simulations are
the quick and dirty solution (QDS) given in (7), the central-
ized solution using the simple Laplace approximation using
the MAP estimator (MAP-GP) in (13), and the proposed
distributed Gaussian process regression (D-GP).

We assume that there are ten sensing agents (q = 10). For
each reference field, sensing agents are randomly located and
each agent only knows a noisy position of itself. The variance
of the position uncertainty is set to σ2

v = 1. Each agent then
makes a noisy measurement from the reference field. The
collection of all measurements by all agents is denoted by
D′ = {x̄, ȳ}. The hyper-parameter σ2

f of the kernel function
in (15) and the variance of the measurement noise σ2

w are
estimated by maximizing the likelihood (3), i.e.,

{σ̂2
f , σ̂

2
w} = arg max logP (ȳ|x̄, σ2

f , σ
2
w),

given D′ = {x̄, ȳ}. Then we have performed the recon-
struction of the entire field from D′ using three algorithms.
For more accurate validation, we have repeated the above
procedure ten times for each reference field, resulting ten
independent runs for each reference field. For each reference
field, we have computed the mean and variance of the
reconstruction error from ten independent runs.
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Fig. 1. Reconstruction errors of three algorithms (QDS, MAP-GP, and D-
GP) for ten different scenarios. Error bars indicate one standard deviation
from ten independent runs for each scenario.

Fig. 2. An example of a reference field and fields reconstructed by three
algorithms (QDS, MAP-GP, and D-GP). The reference field is shown in the
upper left corner and, clockwise from the top, fields reconstructed using
QDS, D-GP, and MAP-GP. The MAP estimates of sensor positions are
marked by gray cross marks.

The mean and variance of the root mean squared (RMS)
errors between the predicted field and the reference field are
shown in Figure 1. As expected, the centralized algorithm
MAP-GP shows the best performance in terms of the re-
construction error, followed by D-GP and QDS. However,
the mean of the reconstruction error of D-GP is comparable
to that of MAP-GP, demonstrating the performance of the
proposed distributed algorithm. One example of the reference
field and the predicted fields using three algorithms are
shown in Figure 2. Figure 3 and Figure 4 demonstrate the
convergence of JOR and DAC used in our algorithm.

Since our objective function (12) is non-convex, we used
a gradient-based nonlinear optimization method for both
MAP-GP and D-GP and this can explain the difference
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Fig. 3. Convergence of the JOR method. The upper and middle figure
indicate Γ1 and [B](1) of agent 1, respectively. The bottom figure shows
the norm of the gradient of x̂, i.e., the solution of the MAP estimator in
(11).

Fig. 4. Convergence of the DAC method. With an increasing number of
iterations, θi from Algorithm 2 of all agents converges.

between the reconstruction errors of these two algorithms
as shown in Figure 1. However, as shown in Table I, D-GP
has outperformed QDS in terms of the reconstruction error
and its performance is comparable to MAP-GP in most cases.
Additionally, it is worth noting that the variance of MAP-GP
and D-GP is clearly smaller than that of QDS. This indicates
that the prediction performance of both solutions are more
robust against diverse situations.
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Method
QDS MAP-GP D-GP

trial mean variance mean variance mean variance
1 25.93 3.57 21.28 1.60 21.73 2.67
2 59.63 8.64 45.59 3.68 47.54 3.16
3 33.67 10.56 24.11 2.62 25.41 4.18
4 64.52 25.00 42.63 1.74 41.21 2.44
5 45.31 5.25 32.09 2.32 32.80 4.03
6 29.67 5.24 24.65 2.68 24.18 1.66
7 40.37 6.20 32.98 1.65 33.03 2.72
8 29.44 5.00 25.62 2.63 25.15 2.30
9 41.31 12.14 24.09 1.55 23.88 2.12
10 56.96 7.03 42.60 2.38 42.85 2.36

TABLE I
MEAN AND VARIANCE OF RECONSTRUCTION ERRORS OF THREE

ALGORITHMS: QDS: QUICK AND DIRTY SOLUTION, MAP-GP:
CENTRALIZED SOLUTION, AND D-GP: PROPOSED APPROACH.

VII. CONCLUSION

We have presented a distributed Gaussian process regres-
sion algorithm that can incorporate both localization and
measurement noises in a Bayesian framework. The proposed
distributed algorithm is constructed by combining Jacobi
over-relaxation (JOR) and discrete time average consensus
(DAC) in a distributed manner and suitable mobile sensor
networks with the limited communication range. At the same
time, the proposed algorithm relieves the heavy computation
burden of computing the inverse of a covariance matrix
required for Gaussian process regression. The performance
of our proposed algorithm is evaluated extensively using
a number of simulations. It has been demonstrated that
the proposed distributed Gaussian process regression (D-
GP) outperforms the quick-and-dirty solution (QDS) in most
cases and its performance is comparable to the centralized
solution.
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