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Abstract— This paper investigates a fully Bayesian way
to solve the simultaneous localization and spatial prediction
(SLAP) problem using a Gaussian Markov random field
(GMRF) model. The objective is to simultaneously localize
robotic sensors and predict a spatial field of interest using
sequentially obtained noisy observations collected by robotic
sensors. The set of observations consists of the observed uncer-
tain poses of robotic sensing vehicles and noisy measurements
of a spatial field. To be flexible, the spatial field of interest
is modeled by a GMRF with uncertain hyperparameters.
We derive an approximate Bayesian solution to the problem
of computing the predictive inferences of the GMRF and
the localization, taking into account observations, uncertain
hyperparameters, measurement noise, kinematics of robotic
sensors, and uncertain localization. The effectiveness of the
proposed algorithm is illustrated by simulation results.

I. INTRODUCTION

The simultaneous localization and mapping (SLAM) prob-

lem needs to be solved for a robot to explore an unknown en-

vironment under localization uncertainty [1]. The variations

of the SLAM problem are surveyed and categorized with

different perspectives in [2]. In general, most SLAM prob-

lems have strong geometric models [1]–[6]. For example, a

robot learns the locations of the landmarks while localizing

itself using triangulation algorithms. Such geometric models

could be classified in two groups, viz., a sparse set of features

which can be individually identified, often used in Kalman

filtering methods [1], and a dense representation such as an

occupancy grid, often used in particle filtering methods [7].

In contrast to the SLAM problem with popular geometrical

models, there is a growing number of practical scenarios in

which no such geometric model exists. Consider localization

using various spatially distributed (continuous) signals such

as distributed wireless Ethernet signal strength [8], or multi-

dimensional magnetic fields [9]. Underwater autonomous

gliders for ocean sampling cannot find usual geometrical

models from measurements of environmental variables such

as pH, salinity, and temperature [10]. Furthermore, there are

reasons to avoid the geometric model as well, even when

a geometric model does exist. Such cases may include: 1)

the difficulty of reliably extracting sparse, stable features, 2)

the willingness to use all sensory data directly rather than

a relatively small amount of abstracted discrete information

obtained from a feature extraction algorithm, and 3) high
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computational and storage costs of dealing with dense fea-

tures.

Motivated by the aforementioned situations, in this paper,

we consider scenarios without geometric models and tackle a

problem of simultaneous localization and prediction (SLAP)

of a spatial field.

Nonparametric modeling and prediction techniques for

random fields have been exploited for mobile robotic sen-

sors [10]–[14]. Random fields such as Gaussian processes

and Gaussian Markov random fields (GMRFs) [15], [16]

have been frequently used for mobile sensor networks to

statistically model physical phenomena such as harmful

algal blooms, pH, salinity, temperature, and wireless signal

strength, e.g., [17]–[19].

The recent research efforts that are closely related to our

problem are summarized as follows. In [20], the authors

formulated Gaussian process regression under uncertain lo-

calization. In [21], the authors used a GMRF with uncertain

hyperparameters and tackled a problem of predicting a ran-

dom field under localization uncertainty. However, kinemat-

ics or dynamics of the sensor vehicles were not incorporated

in [20], [21]. In [22], Gaussian process regression was

used to model geo-referenced sensor measurements (obtained

from a camera). After training with data including noisy

measurements and their exact sampling positions, a maxi-

mum likelihood estimator was used to find the best match

for the location of each of newly sampled measurements.

However, this was not SLAM since the training step has

to be performed a priori for a given environment [22].

In [9], [23], Gaussian process regression was also used to

implement SLAM using a magnetic field and the feasibility

of such approaches were shown experimentally. The work in

[24] used laser range-finder data to probabilistically classify

the robot’s environment into a region of occupancy. It

provides a continuous representation of robot’s surroundings

by employing a Gaussian process. In [8], so called a WiF-

SLAM problem was solved using a Gaussian process latent

variable model (GP-LVM). However, the accurately known

training data and the independence across the dimensions and

instantiations of the data were assumed in [8], which may not

be practical. To the best of our knowledge, most work related

to our SLAP problem did not address uncertainties in the

hyperparameters of the Gaussian process in a fully Bayesian

way. In most of the previous work, the hyperparamters in

the model were estimated offline a priori.

In this paper, we formulate the SLAP problem, in order

to simultaneously localize robotic sensors and predict a

spatial random field of interest using sequentially obtained

2013 American Control Conference (ACC)
Washington, DC, USA, June 17-19, 2013

978-1-4799-0176-0/$31.00 ©2013 AACC 4599



noisy observations collected by robotic sensors. The set

of observations consists of the observed uncertain poses

of robotic sensing vehicles and noisy measurements of a

spatial field. To be flexible, the spatial field of interest is

modeled by a GMRF with uncertain hyperparameters. We

then derive an approximate Bayesian solution to the problem

of computing the predictive inferences of the GMRF and

the localization, taking into account observations, uncertain

hyperparameters, measurement noise, kinematics of robotic

sensors, and uncertain localization. The effectiveness of the

proposed algorithm is illustrated by simulation results.

Standard notation will be used throughout the paper. Let

R and Z>0 denote, respectively, the sets of real and positive

integer numbers. The collection of n number of m dimen-

sional vectors {qi ∈ R
m | i = 1, · · · , n} can be defined by

q := col (q1, · · · , qn) ∈ R
nm using the notation col(·). The

operators of expectation and covariance matrix are denoted

by E and Cov, respectively. A random vector x, which has

a multivariate normal distribution of mean vector µ and

covariance matrix Σ, is denoted by x ∼ N (µ,Σ). For given

G = {c, d} and H = {1, 2}, the multiplication between

two sets is defined as H ×G = {(1, c), (1, d), (2, c), (2, d)}.

Other notation will be explained in due course.

II. SEQUENTIAL BAYSIAN INFERENCE WITH A GMRF

In this section, we define a GMRF model in detail,

formulate the problem, and provide its solution.

A. Gaussian processes and Gaussian Markov random fields

In this section, we briefly introduce a GMRF as a dis-

cretized Gaussian process on a lattice. Consider a Gaussian

process: z(q) ∼ GP(µ,Σ), where µ is the mean vector, and

Σ ∈ R
n×n is the covariance matrix. We discretize the com-

pact domain Sc := [0 xmax] × [0 ymax] into n spatial sites

S := {s[1], · · · , s[n]} ⊂ R
d, where n = hxmax × hymax.

h will be chosen such that n ∈ Z>0. Note that n → ∞ as

h → ∞. The collection of realized values of the random

field in S is denoted by z := (z[1], · · · , z[n])T ∈ R
n, where

z[i] := z(s[i]).
The prior distribution of z is given by N (µ,Σ). We then

have

π(z) ∝ exp

(

−1

2
(z − µ)

T
Σ−1 (z − µ)

)

. (1)

The i, j-th element of Σ is defined as Σ[ij] = Cov(z[i], z[j]).
The prior distribution of z can be written by a precision

matrix Q = Σ−1, i.e., z ∼ N (µ,Q−1). This can be viewed

as a discretized version of the Gaussian process (or a GMRF)

with a precision matrix Q on S. Note that Q of this GMRF

is not sparse. However, a sparse version of Q, i.e., Q̂ with

local neighborhood that can represent the original Gaussian

process can be found, for example, making Q̂ close to

Q in some norm [25]–[27]. This approximate GMRF will

be computationally efficient due to the sparsity of Q̂. In

our simulation study, we will use a GMRF with a sparse

precision matrix that represents a Gaussian process precisely

as shown in [21], [28]. However, any parameterization of µθ

and Qθ, where θ is the hyperparameter vector, can be used.

B. Multiple robotic sensors

Consider N spatially distributed robots with sensors in-

dexed by j ∈ J := {1, · · · , N} sampling at time t ∈ Z>0.

Suppose that the sampling time t ∈ Z>0 is discrete. Recall

that the surveillance region is discretized as a lattice that

consists of n spatial sites, whose set is denoted by S . Let

n spatial sites in S be indexed by I := {1, · · · , n}, and

z := col
(

z[1], · · · , z[n]
)

∈ R
n be the corresponding static

values of the scalar field at n special sites. We denote all

robots’ locations at time t by qt := col
(

qt
[1], · · · , qt[N ]

)

∈
SN , the observations made by all robots at time t by z̃t :=

col
(

z̃
[1]
t , · · · , z̃[N ]

t

)

∈ R
N , and the observed states of all

robots at time t by q̃t := col
(

q̃
[1]
t , · · · , q̃[N ]

t

)

. q̃t and z̃t
are noisy observations of qt and z, respectively. At time t,
robot j takes a noise corrupted measurement at its current

location qt
[j] = s[i] ∈ S, ∀j ∈ J , i ∈ I, viz.,

z̃
[j]
t = z[i] + ǫ

[j]
t , (2)

where the measurement errors {ǫ[j]t } are assumed to be

the independent and identically distributed (i.i.d.) Gaussian

white noise, i.e., ǫ
[j]
t

i.i.d.∼ N (0, σ2
ǫ ). The measurement noise

level σ2
ǫ > 0 is assumed to be known, and we define

ǫt := col
(

ǫ
[1]
t , · · · , ǫ[N ]

t

)

∈ R
N .

In addition, at time t, robot j takes a noisy observation of

its own vehicle position.

q̃
[j]
t = q

[j]
t + e

[j]
t , (3)

where the observation errors {e[j]t } are distributed by

e
[j]
t

i.i.d.∼ N (0, σ2
eI).

The observation noise level σ2
e > 0 is assumed to be

known, and we define et := col
(

e
[1]
t , · · · , e[N ]

t

)

∈ R
d×N .

Our models can be represented in the concise collective

notation.

z̃t = Hqtz + ǫt,

q̃t = Ltqt + et,
(4)

where Lt is the observation matrix for the vehicle states, and

Hqτ ∈ R
N×n is defined by

H [ij]
qτ

=

{

1, if s[j] = q
[i]
τ ,

0, otherwise.

C. Kinematics of robotic vehicles

In this section, we introduce a specific model for the

motion of robotic vehicles. Each robotic sensor is modeled

by a nonholonomic differentially driven vehicle in a two

dimensional domain, i.e., S ∈ R
2. In this case, an equation

of motion for robot i [29] may be given by
[

q̇
[1,i]
t

q̇
[2,i]
t

]

=

[

u
[i]
t cosψ

[i]
t

u
[i]
t sinψ

[i]
t

]

+ β
[i]
t , (5)

where {q[1,i]t , q
[2,i]
t }, {ψ[i]

t }, {u[i]t }, and β
[i]
t denote the

inertial position, the orientation, the linear speed, and the

system noise of robot i in time t, respectively. In this case, the
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kinematics of the vehicle network can be further described

in detail as follows.

qt+1 = qt + Ftut + wt, (6)

where ut is a known control input and wt is an i.i.d. white

noise realized by a known normal distribution N (0,Σwt
).

Assuming that {ψ[i]
t | ∀i ∈ J } in (5) can be measured

precisly, Ft ∈ R
2N×N in (5) is obtained as follows.

Ft = ∆t



























cosψ
[1]
t 0 · · · 0

sinψ
[1]
t 0 · · · 0

0 cosψ
[2]
t · · · 0

0 sinψ
[2]
t · · · 0

...
...

. . .
...

0 0 · · · cosψ
[N ]
t

0 0 · · · sinψ
[N ]
t



























,

where ∆t is a sampling time. We denote the collections of

cumulative robots’ locations, cumulative observations, and

cumulative control inputs from time 1 to time t, respectively,

by q̃1:t := col (q̃1, · · · , q̃t) ∈ SNt
c , z̃1:t := col (z̃1, · · · , z̃t) ∈

R
Nt, and u1:t := col (u1, · · · , ut) ∈ R

Nt.

D. Problem formulation and its Bayesian predictive infer-

ence

In this section, we formulate the SLAP problem and

provide its Bayesian solution. To be precise, we present the

following assumptions A.1-A.5 for the problem formulation.

A.1 The scalar random field z is generated by a GMRF

model which is given by z ∼ N (µθ, Q
−1
θ ), where

µθ and Qθ are given functions of a hyperparameter

vector θ.

A.2 The noisy measurements {z̃t} and the noisy sam-

pling positions {q̃t}, as in (4), are collected by

robotic sensors in time t ∈ Z>0.

A.3 The control input {ut} is a known deterministic

vector at time t.
A.4 The prior distribution of the hyperparameter vector

θ is discrete with a support Θ := {θ(1), · · · , θ(L)}.

A.5 The prior distribution of the sampling positions in

time t, π(qt), is discrete with a support Ω(t) :=

{q(k)t |k ∈ L(t)}, which is given at time t. Here,

L(t) := {1, · · · , γ(t)} denotes the index in the

support and γ(t) is the number of the probable

possibilities for qt.

Problem 2.1: Consider the assumptions A.1-A.5. Our

problem is to simultaneously find the predictive distributions,

means, and variances for both z and q conditional on Dt :=
{z̃1:t, q̃1:t}.

The solution to Problem 2.1 is derived as follows. The

distribution of the GMRF is given by π (z|θ,Dt−1) =
N

(

µz|θ,Dt−1
,Σz|θ,Dt−1

)

. Recall that the evolution of qt is

given by (6) and the input ut is a known deterministic vector

at time t. Therefore, π (qt|Dt−1) can be updated by the

Gaussian approximation of π(qt−1|Dt−1
).

π (qt|Dt−1) ≈
N

(

µqt−1|Dt−1
+ Ft−1ut−1,Σqt−1|Dt−1

+Σwt−1

)

.
(7)

Similarly, π (z̃t|θ,Dt−1, qt) is updated by the Gaussian ap-

proximation of π(z|θ,Dt−1) as follows.

π (z̃t|θ,Dt−1, qt) ≈
N

(

Hqtµz|θ,Dt−1
,Σǫt +HqtΣz|θ,Dt−1

HT
qt

)

.
(8)

Remark 2.2: For the sake of reducing complexity, the

distribution of qt|Dt−1 and z̃t|θ,Dt−1, qt are approximated

by normal distributions.

The joint distribution z, qt, θ|Dt−1 is obtained as follows.

π (z, qt, θ|Dt−1) =

π (z|θ, qt,Dt−1)π (θ|qt,Dt−1)π (qt|Dt−1) .
(9)

The observation model is given by (4), thus the probabilities

of the observed data are π (z̃t|z, qt) = N (Hqtz,Σεt) and

π (q̃t|qt) = N (Ltqt,Σet). The measured random variables

have the following conditional joint distribution,

π (z̃t, q̃t|z, qt, θ,Dt−1) = π (z̃t|z, θ, qt,Dt−1)π (q̃t|qt) .
(10)

From Bayes’ rule, the posterior joint distribution of the

scalar field value, sampling position, and hyperparameter

vectors is given as follows.

π (z, qt, θ|Dt) =
π (z̃t, q̃t|z, qt, θ,Dt−1)π (z, qt, θ|Dt−1)

π (z̃t, q̃t|Dt−1)
.

(11)

In addition, π (qt, θ|Dt) =
∫

π (z, qt, θ|Dt) dz is given as

follows.
∫

π (z, qt, θ|Dt) dz =

π (q̃t|qt)π (θ|qt,Dt−1)π (qt|Dt−1)

π (z̃t, q̃t|Dt−1)
×

∫

π (z|θ, qt,Dt−1)π (z̃t|z, θ, qt,Dt−1) dz,

(12)

where
∫

π (z|θ, qt,Dt−1)π (z̃t|z, θ, qt,Dt−1) dz =
π (z̃t|qt, θ,Dt−1), and π(z̃t|qt, θ,Dt−1) is given by

(8).

Remark 2.3: From Bayes’ rule, π(θ|qt,Dt−1) is given by
π(θ,qt|Dt−1)
π(qt|Dt−1)

. We can compute π (θ, qt|Dt−1) for all the pos-

sible combinations of qt in the previous iteration using (12).

However, for the sake of reducing the computational cost,

we approximate π (θ|qt,Dt−1) by π (θ|Dt−1). Therefore, we

have

π (qt, θ|Dt) ≈
π (q̃t|qt)π (θ|Dt−1)π (qt|Dt−1)π (z̃t|qt, θ,Dt−1)

π (z̃t, q̃t|Dt−1)
,

Marginalizing out uncertainties on the possible qt and θ,

we obtain the following.

π (z, θ|Dt) =
∑

qt∈Ω(t)

π (z, qt, θ|Dt),

π (z|Dt) =
∑

θ∈Θ

π (z, θ|Dt).
(13)
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Our estimation of qt and θ can be corrected using mea-

sured data up to time t as follows.

π (qt|Dt) =
∑

θ∈Θ

π (qt, θ|Dt),

π (θ|Dt) =
∑

qt∈Ω(t)

π (qt, θ|Dt).
(14)

The predictive probability and the mean value of z|θ,Dt

are obtained as follows.

π (z|θ,Dt) =
π (z, θ|Dt)

π (θ|Dt)
,

µz|θ,Dt
=

1

π (θ|Dt)

∑

qt∈Ω(t)

µz|qt,θ,Dt
π (qt, θ|Dt) .

(15)

The predictive covariance matrix of z|θ,Dt can be obtained

using the law of total variance Σz|θ,Dt
= E

(

Σz|qt,θ,Dt

)

+
Cov

(

µz|qt,θ,Dt

)

, where E and Cov are taken over random

variable qt. Such variables are obtained as follows.

E
(

Σz|qt,θ,Dt

)

=
∑

qt∈Ω(t)

Σz|qt,θ,Dt
π (qt|θ,Dt) ,

Cov
(

µz|qt,θ,Dt

)

=
∑

qt∈Ω(t)

(

µz|qt,θ,Dt
− µz|θ,Dt

)

×

(

µz|qt,θ,Dt
− µz|θ,Dt

)T
π (qt|θ,Dt) ,

(16)

where the predictive mean and covariance of z|qt, θ,Dt are

calculated using Gaussian process regression as follows.

µz|qt,θ,Dt
= µz|θ,Dt−1

+Σz|θ,Dt−1
HT

qt
Σ−1

z̃t|θ,Dt−1,qt
(z̃t − µz̃t|θ,Dt−1,qt),

Σz|qt,θ,Dt
= Σz|θ,Dt−1

− Σz|θ,Dt−1
HT

qt
Σ−1

z̃t|θ,Dt−1,qt
HqtΣz|θ,Dt−1

.

(17)

Finally, the first and second moments of qt|Dt are obtained

as follows.

µqt|Dt
=

∑

qt∈Ω(t)

qtπ (qt|Dt) ,

Σqt|Dt
=

∑

qt∈Ω(t)

(

qt − µqt|Dt

)2
π (qt|Dt) .

III. SIMULATION RESULTS

In this section, we demonstrate the effectiveness of the

proposed sequential Bayesian inference algorithm using a

numerical experiment. Suppose that a robot is moving in

a discretized surveillance region S . The spatial sites in S
consist of 31 × 31 grid points, i.e., n = 961, uniformly

distributed over the surveillance region Sc := [−15, 15] ×
[−15, 15]. The evolution of the location of the robot can be

more detailed as follows.

qt+1 = Q (qt + Ftut + vt)

= qt + Ftut + wt,
(18)

where Q : Sc → S is the nearest neighbor rule quantizer

that takes an input and returns a projected value on S .

vt is the process noise and wt is the quantization error

between the continuous and discretized states, i.e., wt =

Q (qt + Ftut + vt) − (qt + Ftut). As the cardinality of S
increases, we have that wt → vt. A special case of (18) is

that Ftut is controlled and wt is chosen such that the next

location qt+1 is on a grid point in S . In this case, we have

vt = wt.

In this illustrative example, we realize the spatial field

developed in [21], which a GMRF wrapped around in a torus

structure. Thus the top edge (respectively, the left edge) and

the bottom edge (respectively, the right edge) are neighbors

each other. The parameters of the model in [21] are selected

as follows. The mean vector µθ is chosen to be zero, and the

precision matrix Qθ is chosen with hyperparameters α = 0.1
equivalent to a bandwidth ℓ =

√
2/
√
α ≈ 4.47, and κ = 50

equivalent to σ2
f = 1/4πακ ≈ 0.016. The prior distribution

of the hyperparameter vector θ is discrete with a support

Θ = {(κ, α), (0.1κ, α), (10κ, α), (κ, 0.1α), (κ, 10α)},

along with the corresponding uniform probabilities

{0.2, 0.2, 0.2, 0.2, 0.2}. The measurement noise variance in

(2) is given by σǫ = 0.1.

A robot takes measurements at time t ∈ {1, 2, · · · , 100}
with localization uncertainty. In Figs. 1-(d), (e), and (f),

true, noisy, and probable sampling positions are shown in

circles, stars, and dots, respectively, at time t = 100. In

this simulation, the standard deviation of the noise in the

observed sampling position is given by σe = 10 in (3).

The probable sampling positions that form support Ω(t), are

selected within the confidence region of Pr(‖q[i]t − q̃
[i]
t ‖ ≤

σe).
The results of the simultaneous localization and spatial

prediction are summarized for three methods as follows.

• Case 1: Figs. 1-(a), (d), and (g) show the prediction,

prediction error variance, and squared (empirical) error

fields, using exact sampling positions. With the true

sampling positions, the best prediction quality is ex-

pected for this case.

• Case 2: Figs. 1-(b), (e), and (h) show the results, by

using sampled noisy positions. The results clearly illus-

trate that naively applying GMRF regression to noisy

sampling positions can potentially distort prediction at

a significant level. Fig. 1-(h) shows that squared error

of this case is considerably higher than that of Case 1.

• Case 3: Figs. 1-(c), (f), and (i) show the results,

by applying the proposed approach in Section II-D.

The resulting prediction quality is much improved as

compared to Case 2 and is even comparable to that of

Case 1.

The averaged squared errors in time and space, using

true sampling positions (Case 1), noisy sampling positions

(Case 2), and using uncertain sampling positions (Case 3)

are 0.0837 × 10−3, 0.1664 × 10−3, and 0.0989 × 10−3,

respectively. This shows the effectiveness of our solution to

Problem 2.1.

The true positions of the robot for time t ∈ T :=
{10, 31, · · · , 30} are shown in Fig. 2 by red diamonds and

lines. The estimated sampling positions of the robot E(qt|Dt)
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Fig. 2. The trajectories of true, predicted, and noisy sampling positions of
the robot are shown by red diamonds, blue dots, and green stars for time
t ∈ {10, 11, · · · , 30}. The blue ellipsoids show the confidence regions of
about 68% for the estimated sampling positions.

for t ∈ T are shown in blue dots with estimated confidence

regions. Fig. 2 clearly shows that the proposed approach in

this paper significantly reduce the localization uncertainty as

compared to the noise level of the sampled positions (denoted

by green stars).

In this example, the fixed running time using Matlab

R2009b (MathWorks) on a PC (3.2 GHz Intel i7 Processor)

is about 40 seconds for each iteration of time which is fast

enough for real world implementation.

IV. CONCLUSION

In this paper, we provide an approximate Bayesian solu-

tion to the problem of simultaneous localization and spatial

prediction (SLAP), taking into account kinematics of robots

and uncertainties in the precision matrix, the sampling posi-

tions, and the measurements of a GMRF in a fully Bayesian

manner. In contrast to [21], the kinematics of the robotic

vehicles are integrated into the inference algorithm. The

simulation results show that the proposed approach estimates

the sampling positions and predicts the spatial field along

with their prediction error variances successfully, in a fixed

computational time. The simulation study suggests that the

complexity of the proposed scalable inference algorithm is

affordable for a robot to operate in real world situations.
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[27] L. Hartman and O. Hössjer, “Fast kriging of large data sets with
Gaussian Markov random fields,” Computational Statistics & Data

Analysis, vol. 52, no. 5, pp. 2331–2349, January 2008.

[28] F. Lindgren, H. Rue, and J. Lindström, “An explicit link between
Gaussian fields and Gaussian Markov random fields: the stochastic
partial differential equation approach,” Journal of the Royal Statistical

Society: Series B, vol. 73, no. 4, pp. 423–498, September 2011.
[29] W. Ren, “Consensus strategies for cooperative control of vehicle

formations,” Control Theory & Applications, IET, vol. 1, no. 2, pp.
505–512, 2007.

4604


