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Abstract— In this paper, we formulate Gaussian process
regression with observations under the localization uncertainty.
In our formulation, effects of observations, measurement noise,
localization uncertainty and prior distributions are all correctly
incorporated in the posterior predictive statistics. The analyt-
ically intractable posterior predictive statistics are proposed
to be approximated by Laplace approximations in different
degrees of complexity. Such approximations have been carefully
tailored to our problems and their approximation errors and
complexity are analyzed. Simulation results demonstrate that
the proposed approaches perform much better than approaches
without considering the localization uncertainty correctly.

I. INTRODUCTION

Recently, there has been a growing interest in wireless
sensor networks due to advanced embedded network tech-
nology. Exploitation of mobile sensor networks has been
increased in collecting spatio-temporal data from the envi-
ronment [1], [2]. Gaussian process regression (or Kriging
in geostatistics) has been widely used to draw statistical
inference from geostatistical and environmental data [3], [4].
Gaussian process modeling enables us to predict physical
values, such as temperature or harmful algae bloom biomass,
at any point and time with a predicted uncertainty level. For
example, near-optimal static sensor placements with a mutual
information criterion in Gaussian processes were proposed
in [5], [6]. A distributed Kriged Kalman filter for spatial
estimation based on mobile sensor networks was developed
in [2]. Multi-agent systems that are versatile for various
tasks by exploiting predictive posterior statistics of Gaussian
processes were developed in [7], [8].

Localization in sensor networks is a fundamental prob-
lem in various applications to correctly fuse the spatially
collected data to estimate the process of interest. However,
obtaining precise localization of robotic networks under
limited resources is very challenging [9], [10]. In practice,
resource-constrained sensor network systems are prone to
large uncertainty in localization. Most previous works on
Gaussian process regression for mobile sensor networks [3],
[6]–[8] have assumed that the exact sampling positions are
available, which is not practical in real situations.

Therefore, motivated by the aforementioned issues, we
consider correct (Bayesian) integration of uncertainties in
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sampling positions, observations and measurement noise for
Gaussian process regression and its computation error and
complexity analysis for the sensor network applications. The
overall picture of our work is similar to the one in [11]
in which an extended Kalman filter (EKF) was used to
incorporate robot localization uncertainty and field parameter
uncertainty. However, [11] relies on a parametric model,
which is a radial basis function network model, and EKF
while our motivation is to use more flexible non-parametric
approach, viz., Gaussian process regression taking into ac-
count localization uncertainty in a Bayesian framework.

Gaussian process regression in [12], [13] integrated uncer-
tainty in the test input position for multiple-step ahead time
series forecasting. However, it did not consider uncertainty in
the sampling position of the training data (or observations).

Gaussian process prediction with localization uncertainty
can be obtained as a posterior predictive distribution using
Bayes’ rule. The main difficulty to this is that it has no
analytic closed-form solution and has to be approximated
either through Monte Carlo sampling [14] or other approx-
imation techniques such as variational inference [15]. As
an important analytical approximation technique, Laplace’s
method has been known to be useful in many such situations
[16]–[19].

The contribution of this paper is as follows. First, we for-
mulate Gaussian process regression with observations under
the localization uncertainty due to the resource-constrained
(possibly mobile) sensor networks. Next, approximations
have been obtained for analytically intractable predictive
mean and predictive variance by using Laplace approxima-
tions. Such approximation methods have been carefully tai-
lored to our problems. In particular, a modified version of the
moment generating function (MGF) approximation [17] has
been developed to reduce the computational complexity. In
addition, we have analyzed and compared the approximation
error and the complexity. Simulation results illustrate that the
proposed methods outperform the quick-and-dirty solutions
often used in practice.

Standard notation will be used throughout the paper. Let
R, R≥0, R>0 and Z>0 denote, respectively, the sets of real,
non-negative real, positive real and positive integer numbers.
In denotes the identity matrix of size n (I for an appropriate
dimension.) For column vectors va ∈ Ra, vb ∈ Rb, and vc ∈
Rc, col(va, vb, vc) :=

[
vTa vTb vTc

]T ∈ Ra+b+c stacks
all vectors to create one column vector, and ‖va‖ denotes the
Euclidean norm (or the vector 2-norm) of va. |V | denotes the
determinant of a matrix V ∈ Rn×n, and tr(V ) denotes trace
of a square matrix V . A random vector X ∈ Rn, which



is distributed by a multivariate Gaussian distribution of a
mean X0 and a variance Σ, is denoted by X ∼ N (X0,Σ).
We define the first and the second derivative operators on
h(X) ∈ R with respect to a vector X ∈ Rm as follow.

D1h(X) =
∂h(X)

∂X
∈ Rm×1, D2h(X) =

∂2h(X)

∂X∂XT
∈ Rm×m.

II. PRELIMINARIES

A. Gaussian Process Regression
A Gaussian process defines a distribution over a space of

functions and it is completely specified by its mean function
and covariance function. Let x ∈ Rd denote the index vector.
where x := [ sT t ]T contains the sampling location s ∈
Q ⊂ Rd−1 and the sampling time t ∈ R≥0. A Gaussian
process, y(x) ∈ R, is formally defined as below.

Definition 1: A Gaussian process [20] is a collection of
random variables, any finite number of which have a joint
Gaussian distribution.

For notational simplicity, we consider a zero-mean Gaus-
sian process1 y(x) ∼ GP(0,K(x, x′)) ∈ R. For exam-
ple, one may consider a covariance function defined as
K(x, x′) = σ2

f exp
(
−‖x−x

′‖2
2σ2

x

)
, where x, x′ ∈ Rd. The

mean and the covariance function of a Gaussian process can
be estimated a priori by maximizing the likelihood function
[21].

Suppose, we have q noise corrupted observations without
localization error, D′ =

{
(x(i), ȳ(i)) | i = 1, · · · , q

}
. Assume

that ȳ(i) = y(i) + w(i) ∈ R, where w(i) is an inde-
pendent and identically distributed (i.i.d.) white Gaussian
noise with variance σ2

w. The collections of the realizations
Y = [ y(1) · · · y(q) ]T ∈ Rq and observations Ȳ =
[ ȳ(1) · · · ȳ(q) ]T ∈ Rq have the Gaussian distributions
Y ∼ N (0,K), Ȳ ∼ N (0,K + σ2

wI), where K ∈ Rq×q is
the covariance matrix of Y obtained by Kij = K(x(i), x(j)).
We can predict the value y? of the Gaussian process at a
point x? as [20], y?|D′ ∼ N (ŷ?, σ̂

2
?). The predictive mean

is
ŷ? = E[y?|D′] = kT (K + σ2

wI)−1Ȳ , (1)

and the predictive variance is given by

σ̂2
? = Var(ŷ?|D′) = E[(y?−ŷ?)2|D′] = σ2

f−kT (K+σ2
wI)−1k,

(2)
where k ∈ Rq is the covariance matrix between Y and y?
obtained by kj = K(x(j), x?), and σ2

f = K(x?, x?) ∈ R is
the variance at x?. (1) and (2) can be obtained from the fact
that

col(y?, Ȳ )|x?, X ∼ N
(

0,

[
σ2
f kT

k (K + σ2
wI)

])
, (3)

where X is defined by X = col(x(1), x(2), · · · , x(q)).
In this paper, we also assume that at each iteration the

mobile sensor networks only needs to fuse a fixed number
of truncated observations, which are near the target point of
interest, to limit the computational resources [22], [23].

1A Gaussian process with a nonzero-mean can be treated by a change of
variables. Even without a change of variables, this is not a drastic limitation,
since the mean of the posterior process is not confined to zero [20].

B. Laplace Approximations

The Laplace method is a family of asymptotic approx-
imations that approximate an integral of a function, i.e.,∫
X f(X)dX , where X ∈ X ⊂ Rm. Let the function f(X)

be in a form f(X) = e−nh(X), where 1 � n ∈ Z>0, and
h : X → R is a class C2. Let X̂ denote the exact mode of
−h, i.e., X̂ = arg maxX∈X −h(X). Then Laplace’s method
produces the approximation [16]:∫

X
f(X)dX =

(
2π

n

)m
2

|V | 12 e−nh(X̂) +O(n−1), (4)

where V = [D2h(X̂)]−1. The Laplace approximation in (4)
will produce reasonable results as long as the −h is unimodal
or at least dominated by a single mode.

In practice it might be difficult to find the exact mode
of −h. A concept of an asymptotic mode is introduced to
gauge the approximation error when the exact mode is not
used [18].

Definition 2: X̂a is called an asymptotic mode of order
O(n−k) for −h if ‖X̂a − X̂‖ → 0 as n → ∞, and
D1h(X̂a) = O(n−k).

Suppose that X̂a is an asymptotic mode of order O(n−1)
for −h and {h, X̂a} satisfies the regularity conditions [18].
Then it follows that we have∫
X
f(X)dX =

(
2π

n

)m
2

|V | 12 e−nh(X̂a)C(X̂a) +O(n−1),

(5)
where C(X̂a) = e(

n
2D

1h(X̂a)T [D2h(X̂a)]−1D1h(X̂a)).
More precise form with the asymptotic mode of order

O(n−2) is computed for an approximation of order O(n−3)
in [19].

In many Bayesian inference applications and as in our
problem, we need to compute the ratio of two integrals. To
this end, fully exponential Laplace approximations has been
developed by [16] to compute Laplace approximations of the
ratio of two integrals, i.e.,

M =

∫
X e
−nh?(X)dX∫

X e
−nh(X)dX

. (6)

If each of −h? and −h has a dominant peak at its maximum,
then Laplace’s method may be directly applied to both
the numerator and denominator of (6) separately. If the
regularity conditions are satisfied, using (4) for denominator
approximation and (5) for numerator approximation, Miyata
obtained the following approximation and its error order (see
Theorem 3 in [18]),

M̂ =
|D2h(X̂)|1/2enh(X̂)

|D2h?(X̂a)|1/2enh?(X̂a)
× C?(X̂a),

M = M̂+O(n−2),

(7)

where X̂ is the exact mode of −h, and X̂a is the asymptotic
mode of −h?, and

C?(X̂a) = e(
n
2D

1h?(X̂a)T [D2h?(X̂a)]−1D1h?(X̂a)),

X̂a = X̂ − [D2h?(X̂)]−1D1h?(X̂).
(8)



Laplace’s method typically has an error of order O(n−1) as
shown in (4) and (5). On the other hand, fully exponential
Laplace approximations for the ratio form yield an error of
order O(n−2) as shown in (7) since the error terms of order
O(n−1) in the numerator and the denominator cancel each
other [16].

III. THE PROBLEM STATEMENT

In practice, D′ is not available due to localization uncer-
tainty, and instead its exact sampling points will be replaced
with noise corrupted sampling points.

To average out measurement and localization noises, in
this paper, we propose to use a sampling scheme in which
multiple measurements are taken repeatedly at a set of
sampling points of a sensor network. For robotic sensors
or mobile sensor networks, this sampling strategy could be
efficient and inexpensive since the large energy consumption
is usually due to the mobility of the sensor network. Let q
sensing agents be indexed by J = {1, · · · , q}. From the
proposed sampling scheme, we assume that each agent takes
multiple data pairs {(x̄(i), ȳ(i)) | i ∈ I}, which are indexed
by I = {1, · · · , n} at a set of sampling points by the sensor
network {x(j) | j ∈ J }. We then define the map φ : I → J
that takes the index of the data pair in I as the input and
returns the index of the sensor that produced the data pair
as the output. Consider the following realizations using the
sampling scheme and the notation just introduced.

x̄(i) = x(φ(i)) + v(i) ∈ Rd, ∀i ∈ I
ȳ(i) = y(φ(i)) + w(i) ∈ R, ∀i ∈ I,

where w(i) is an i.i.d. white Gaussian noise with a zero
mean and a variance of σ2

w, i.e., w(i) ∼ N (0, σ2
w) and

v(i) is a localization error which has a multivariate normal
distribution with a zero mean and a covariance matrix Σv ∈
Rd×d, i.e., v(i) ∼ N (0,Σv). For instance, the distribution of
the localization error may be a result of the fusion of GPS
and INS measurements [24], or landmark observations and
robot’s kinematics [25].

To simplify the notation, D is introduced to denote the
data with the measurement noise and localization error as
follows.

D =
{

(x̄(i), ȳ(i)) | i ∈ I
}
. (9)

We also define the collective sampling point vectors with
and without localization uncertainty, and the cumulative
localization noise vector, respectively by

X = col(x(1), x(2), · · · , x(q)) ∈ Rdq,
X̄ = col(x̄(1), x̄(2), · · · , x̄(n)) ∈ Rdn,
V = col(v̄(1), v̄(2), · · · , v̄(n)) ∈ Rdn.

(10)

From the proposed sampling scheme, to average out the
measurement and localization uncertainties, the number of
measurements n can be increased without increasing the
number of sensors q, and consequently without increasing
the dimension of X ∈ Rdq . Hence, this approach may
be efficient for the resource-constrained (mobile) sensor

network at the cost of taking more measurements. Using col-
lective sampling point vectors in (10), we have the following
relationship.

X̄ = LX + V, (11)

where L = L̄ ⊗ Id ∈ Rdn×dq , L̄ ∈ Rn×q and L̄ij = 1 if
φ(i) = j, otherwise L̄ij = 0. The conditional probability
p(X̄|X) can be written as follow.

p(X̄|X) =
1

|2πΣV |
1
2

e−
1
2 (X̄−LX)T Σ−1

V (X̄−LX).

From a Bayesian perspective, we can treat X as a random
vector to incorporate a prior distribution on X . For example,
if we assign a prior distribution on X such that X ∼
N (0,ΣX) then we have

p(X|X̄) =
1

|2πΣZ |
1
2

e−
1
2 (X−HX̄)T Σ−1

Z (X−HX̄). (12)

where H = ΣZL
TΣ−1

V and Σ−1
Z = Σ−1

X + LTΣ−1
V L.

Evaluating posterior predictive statistics such as the den-
sity, the mean, and the variance are of critical importance
for the sensor network applications.

Therefore, given the data D in (9), our goal is to compute
the posterior predictive statistics. In particular we focused on
the following two quantities given in detail. The predictive
mean estimator (PME) is given by the following equation.

E[y?|D] =

∫
X ŷ?p(Ȳ |X)p(X|X̄)dX∫
X p(Ȳ |X)p(X|X̄)dX

, (13)

where ŷ? is given by (1). The predictive variance estimator,
Var(y?|D) given as the following formula.

Var(y?|D) =

∫
X (σ̂2

?(X) + ŷ2
?(X))p(Ȳ |X)p(X|X̄)dX∫

X p(Ȳ |X)p(X|X̄)dX

− E[y?|D]2,
(14)

where ŷ? and σ̂2
? are given by (1) and (2), respectively.

The main challenge to our problems is the fact that there
are no closed-form formulas for the posterior predictive
statistics listed in (13), and (14). Therefore, in this paper,
approximation techniques will be carefully applied to obtain
approximate solutions. In addition, the trade-offs between
the computational complexity and the precision will be
investigated for the sensor networks with limited resources.

From (12), one might be tempted to use the best estimate
of X , e.g., the conditional expectation of X for given
measured locations X̄ , i.e., E(X|X̄) for the Gaussian process
regression. Comparison between this type of quick-and-dirty
solutions and the proposed Bayesian approach as in (13) will
be evaluated in Sections V.

IV. FULLY EXPONENTIAL LAPLACE APPROXIMATIONS

In this section, we propose fully exponential Laplace ap-
proximations to compute the posterior predictive statistics. In
the process of applying Laplace’s method, we also obtain the
estimation of the sampling points given D as a by-product.
From the observations D, we can update the estimates of the
sampling points X .



A. Predictive mean

The fully exponential Laplace approximations which are
presented in [16] are limited for the posterior expectation
of positive functions. Then, Tierney et al. [17] proposed a
second-order approximation to the expectation of a general
function g(X) (not necessarily positive) by applying the fully
exponential method to approximate M(τ) = E[eτg(X)|D]
and then differentiating the approximated M(τ).

Let h(X) = − 1
n ln

(
p(Ȳ |X)p(X|X̄)

)
, h?(X) =

− τ
ng(X)+h(X), where g(X) = y?(X). d

dτ M̂(τ) evaluated
at τ = 0 yields a second-order approximation to E[y?|D] and
its order of the error is as follow.

E[y?|D] =
d

dτ
M(τ)

∣∣∣∣
τ=0

=
d

dτ
M̂(τ)

∣∣∣∣
τ=0

+O(n−2).

(15)

This method, which is called moment generating func-
tion (MGF) Laplace approximation, gives a standard-form
approximation using the exact mode of −h(X) [17].

Miyata [18], [19] extended the MGF method for one
without computing the exact mode of −h(X). Let X̂ be an
asymptotic mode of order O(n−1) for −h(X). Suppose that
{h, X̂} satisfies the regularity conditions for the asymptotic-
mode Laplace method, which are given in [18]. By using
Theorem 5 in [18], the MGF-PME of our problem Ê[y?|D] =
Ê[g(X)|D] and its error order are given as

Ê[y?|D] = g(X̂) +
1

2n
tr
(
D2g(X̂)V

)
− 1

2n

n∑
ijkq=1

h[ijk](X̂)ViqVjk
∂g(X̂)

∂Xq

−D1g(X̂)TV D1h(X̂),

E[y?|D] = Ê[y?|D] +O(n−2),

(16)

where V = [D2h(X̂)]−1 and Vij is the i-th row, j-th column
element of the matrix V , and h[ijk] = ∂3h(X̂)

∂Xi∂Xj∂Xk
is the third

partial derivative of h(X) respect to Xi, Xj and Xk at the
point X = X̂ .

Furthermore, if X̂ is the exact mode of −h (see [17]),
then approximation has a simpler form because the terms
that include D1h(X̂) vanish

E[y?|D] ≈g(X̂) +
1

2n
tr
(
D2g(X̂)V

)
− 1

2n

n∑
ijkq=1

h[ijk](X̂)ViqVjk
∂

∂Xq
g(X̂).

(17)

However, the MGF-PME given by (16) and (17) needs the
computation of the third derivative of h, which increases the
complexity of the algorithm.

In this paper, another MGF method has been developed in
order not to use the third derivative of h. To approximate
the derivative of M(·) at a point τ , we utilize a three-
point estimation, which is the slope of a nearby secant line
through the points (τ −δ,M(τ −δ)) and (τ +δ,M(τ +δ)).
Approximating the derivative in (15) with the three-point

estimation, we can avoid the third derivative in (16) or (17).
We summarize our results in the following theorem.

Theorem 3: Let X̂ be the exact mode of −h(X). The
three-point predictive mean estimator (TP-PME) and its order
of the error are given by

Ê[y?|D] =
1

2
n3/4

∣∣∣D2h(X̂)
∣∣∣1/2 enh(X̂)

×
{∣∣∣D2h+(X̂+)

∣∣∣−1/2

C+(X̂+)e−nh+(X̂+)

−
∣∣∣D2h−(X̂−)

∣∣∣−1/2

C−(X̂−)e−nh−(X̂−)

}
= E[y?|D] +O(n−3/2),

(18)

where we have used the following definitions

h+(X) = h(X)− n−7/4g(X),

h−(X) = h(X) + n−7/4g(X),

X̂+ = X̂ − [D2h+(X̂)]−1D1h+(X̂),

X̂− = X̂ − [D2h−(X̂)]−1D1h−(X̂),

C+(X̂+) = e
n
2D

1h+(X̂+)T [D2h+(X̂+)]−1D1h+(X̂+),

C−(X̂−) = e
n
2D

1h−(X̂−)T [D2h−(X̂−)]−1D1h−(X̂−).
Proof: The proof is omitted due to the page limit.

B. Predictive variance

We now apply Laplace’s method to approximate prediction
error variance in a similar way. The prediction error variance
is given by (14). In this case, we define

h(X) = − 1

n
ln
(
p(Ȳ |X)p(X|X̄)

)
h?(X) = − 1

n
ln(σ̂2

?(X) + ŷ2
?(X)) + h(X).

(19)

Applying (7) to this case, the approximate of Var(y?|D) and
its order of the error are given by

V̂ar(y?|D) =
|D2h(X̂)|1/2enh(X̂)

|D2h?(X̂a)|1/2enh?(X̂a)
C?(X̂a)− Ê[y?|D]2

=Var(y?|D) +O(n−2),
(20)

where X̂ is the exact mode of −h, and X̂a is the asymptotic
mode of −h?. C?(X̂a) and X̂a are given by (8).

C. Simple Laplace approximations

To minimize the computational complexity, one may pre-
fer a simpler approximation. In this paper, we propose such
a simple approximation at the cost of precision, which is
summarized in the following theorem.

Theorem 4: Let X̂ be an asymptotic mode of order
O(n−1) for −h given by (19). Assume that {h, X̂} satisfies
the regularity conditions. Consider the following approxima-
tions for E[y?|D] and Var(y?|D)

Ê[y?|D] = kT (X̂)(K(X̂) + σ2
wI)−1Ȳ , (21)

V̂ar(y?|D) = σ2
f − kT (X̂)(K(X̂) + σ2

wI)−1k(X̂), (22)



TABLE I
ERROR AND COMPLEXITY ANALYSIS

Estimator Method Error Complexity
MGF-PME in (16) Laplace MGF O(n−2) O(n6)

TP-PME in (18) Laplace MGF O(n−3/2) O(n5)
S-PME in (21) Laplace MGF O(n−1) O(n3)

TABLE II
SIMULATION PARAMETERS

Description Parameter Value
Number of agents with different positions q 20
Number of measurements n 40
The variability at a fixed point σf

√
2

Bandwidth σx
√

2

Noise covariance matrix of localization Σv

√
0.1× I

Measurement noise level σw 0.01

where K(X̂) and k(X̂) are covariance matrices as in (1) but
obtained with X̂ . We have then the following order of errors.

Ê[y?|D] = E[y?|D] +O(n−1),

V̂ar(y?|D) = Var(y?|D) +O(n−1).
Proof: The proof is omitted due to the page limit.

Remark 5: As we previously mentioned, X̂ is the mode
of −h given by (19) and is the MAP estimator of X , i.e.,
X̂ = X̂MAP , which is given by

X̂MAP = arg max
X∈X

p(Ȳ |X)p(X|X̄).

Therefore, the difference in the simple Laplace approxima-
tions with respect to a quick-and-dirty solution in which the
measured location vector X̄ is used is that simple Laplace
approximations use X̂ instead of X̄ .

In applying Laplace’s method, using the one step Newton
gradient method to compute asymptotic modes, e.g., X̂a

required in (20) or X̂+ and X̂− required in (18) may not
satisfy the regularity conditions. In this case, one needs to
continue the Newton gradient optimization until the regular-
ity conditions are satisfied.

The order of the error and the computational complexity
for the proposed approximation methods are summarized in
Table I. A tradeoff between approximation error and com-
plexity can be chosen taking into account the performance
requirements and constrained resources for a specific sensor
network application. For Laplace’s method, the order of
the error ranges from O(n−1) to O(n−2) at the cost of
complexity from O(n3) to O(n6) as shown in Table I.

V. SIMULATION RESULTS

In this section, we provide simulation results to evaluate
the performances of different estimation methods. To this
end, a snapshot of a realization of a Gaussian process that
will serve as ground truth is shown in Fig. 1. The parameter
values used to generate this Gaussian process are shown in
Table II. q = 20 and n = 40 imply that each robot takes
measurements twice at each sampling position.

Fig. 1. A snapshot of a realization of a Gaussian process (ground truth).

The prediction results are summarized for the four meth-
ods of prediction described as follows.
• Case 1: The predicted field and the prediction error

variance from applying the Gaussian process regression
using the noiseless positions X and the noisy measure-
ment Ȳ are shown in Fig. 2-(a) and (e), respectively.

• Case 2: When the measurements are taken repeatedly as
suggested in Section III, To compare proposed approx-
imation with typical quick-and-dirty solutions (QDS)
to deal with noisy locations X̄ in practice we use the
conditional expectation of sampling positions X given
X̄ as in (12) and the least squares solution of Y for
given Ȳ , which shall be plugged into Gaussian process
regression, i.e.,

ŷ? = kT (HX̄)(K(HX̄) + σ2
wI)−1[(L̄T L̄)−1L̄T Ȳ ],

where H is from (12) and L̄ is from (11). Figs. 2-(b)
and (f) show the predicted field and the prediction error
variance by applying QDS on X̄ and Ȳ .

• Case 3: The predicted field and the prediction error
variance, using Laplace approximations, are shown in
Fig. 2-(c) and (g), respectively.

• Case 4: Figs. 2-(d) and (h) show the result of applying
the simple Laplace approximations on noisy localiza-
tions and measurements data.

To numerically quantify the performance of each ap-
proach, we have computed the root mean square (RMS)
error between the predicted and true fields over the two
dimensional space for all methods, which are summarized
as follows. The RMS errors for case 1, 2, 3 and 4 are
0.1281, 0.7374, 0.3320, and 0.3503, respectively. This
RMS error analysis could be done since we know the true
realization of the Gaussian process exactly in this simulation
study. As expected, Gaussian process regression with the
true locations perform best. The proposed approaches, i.e.,
Laplace approximations and simple Laplace approximations
outperform QDS in terms of RMS errors as well. In addition,
Fig. 2 clearly shows that the Laplace’s method outperforms
QDS.

VI. CONCLUSION

We have formulated Gaussian process regression with
observations under the localization uncertainty due to (possi-
bly mobile) sensor networks with limited resources. Effects
of observations, measurement noise, localization uncertainty
and prior distributions have been all correctly incorporated



(a) (b) (c) (d)

(e) (f ) (g) (h)

Fig. 2. The predicted fields and the prediction error variances for all 4 cases are shown in the first and second rows, respectively. The results of case 1,
2, 3, and 4 are shown in the first, second, third, and fourth columns. Pink crosses in (e), (f), (g), and (h) represent X , E(X|X̄), X̄ , and X̂ , respectively.

in the posterior predictive statistics in a Bayesian approach.
We have reviewed Laplace’s method, which has been applied
to compute the analytically intractable posterior predictive
statistics of the Gaussian processes with localization un-
certainty. The approximation error and complexity of all
proposed approaches have been analyzed. In particular, we
have provided tradeoffs between approximation error and
complexity of Laplace’s method and its different degrees
such that one can choose a tradeoff taking into account the
performance requirements and computation complexity due
to the resource-constrained sensor network. The simulation
study demonstrated that the proposed approaches perform
much better than approaches without considering the local-
ization uncertainty properly.
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